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State of the art quantum sensing experiments targeting frequency measurements or frequency addressing
of nuclear spins require one to drive the probe system at the targeted frequency. In addition, there is a
substantial advantage to performing these experiments in the regime of high magnetic fields, in which the
Larmor frequency of the measured spins is large. In this scenario we are confronted with a natural challenge
of controlling a target system with a very high frequency when the probe system cannot be set to resonance
with the target frequency. In this contribution we present a set of protocols that are capable of confronting
this challenge, even at large frequency mismatches between the probe system and the target system, both
for polarization and for quantum sensing.
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Introduction.—Nuclear spins control by electrons is
ubiquitous in quantum technology setups. Control experi-
ments of nuclei in solids were realized via defects in
diamond [1,2], especially Nitrogen-Vacancy (NV) centers
in diamond [3–7], silicon carbide [8,9], and silicon [10,11].
These experiments were motivated by quantum computing
[12–16], quantum sensing [17–19], and dynamical nuclear
polarization [20–25]. Nuclear spins control requires one to
work at resonance, which is manifested by the Hartmann-
Hahn (HH) condition [26]. The HH condition requires one to
equate the Rabi frequency (RF) at which the electron is
driven to the Larmor frequency (LF) of the nuclei [Fig. 1(a)].
There is, however, a strong motivation to perform experi-
ments at high magnetic fields due to the prolonged nuclear
coherence time and the improvement in single-shot readout.
Such experiments are very challenging and only a few were
realized successfully [17,27–29]. Moreover, in some experi-
ments (e.g., in biological environments) the maximal RF is
restricted by deleterious heating effects that are associated
with high power. In such cases it is challenging to reach the
high RF that matches the nuclear LF [Fig. 1(b)].
In this Letter we present a few schemes that can over-

come this limitation in the various regimes of the mismatch
between the RF and the targeted LF. We show that by
employing a detuned driving field with a constant bounded
RF or a driving field with a (bounded) modulated RF or a
modulated phase, it is possible to reach the HH condition
[Fig. 1(c)]. Although such protocols were achieved with
pulsed schemes that require high power [30], we introduce
simpler continuous drive based constructions that are
significantly more power efficient [31,32]. While we focus
on the NV center, the presented schemes are general and
applicable to both the optical and microwave domains, and
hence to a variety of atomic and solid state systems.

The model.—We consider an NV center electronic spin
that is interacting with a single or several nuclei via the
dipole-dipole interaction. Under an on-resonance drive,
the Hamiltonian of the NV and a nuclear spin is given
by [33] H¼ðω0=2Þσzþðωl=2ÞIzþgσzIxþΩ1σxcosðω0tÞ,

(a)

(b)

(c)

FIG. 1. The main problem. (a) Control and sensing of nuclear
spins is achieved by satisfying the HH condition. The electron is
driven with a RF (Ω) that is equal to the nuclear LF (ωl). This
results in dressed electron states that are on resonance with the
LF, enabling the electron-nucleus spin interaction. (b) The
electron is driven with a bounded RF, which is smaller than
the LF (Ω < ωl) and thus no coupling can be achieved. This is a
typical problem in the high magnetic fields regime. (c) We
propose a set of protocols where even though the electron spin is
driven with a bounded RF, jΩðtÞj < ωl, an effective dressed
electronic energy gap that is equal to the LF is obtained. The
effective electron-nucleus coupling strength decreases for a larger
frequency mismatch ωl − Ω. Dotted lines (solid lines) indicate
energy gaps (driving fields).
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where ω0 corresponds to the NV’s energy gap, ωl is the
nucleus LF, σz and Iz are the Pauli operators in the direction
of the static magnetic field of the NV and the nucleus
respectively, g is the NV-nucleus coupling strength, and Ω1

is the RF of the NV drive. For sensing and control of the
nucleus by the NV the HH condition, Ω1 ¼ ωl, must be
fulfilled [Fig. 1(a)] [33].
In the high magnetic field regime the nuclear LF,

ωl ¼ γnB, where γn is the nuclear gyromagnetic ratio
and B is the static magnetic field, can be as high as
∼100 MHz. Hence, because of either technical limitations
or avoidance of heating effects that occur due to the high
power that is required to generate such a large RF, it is
impossible to fulfil the HH condition by an on-resonance
drive. Namely, we must work in the regime where jΩ1j <
ωl [Fig. 1(b)]. We term the frequency difference, ωl −Ω1,
as the frequency mismatch between the NV frequency (Ω1)
and the nuclear LF (ωl).
We propose a set of protocols where even though the

electron is driven with a bounded RF, jΩðtÞj < ωl, an
effective dressed electronic energy gap that is equal to
the LF is obtained, and hence, the resonance condition is
retrieved. Most generally, we consider the Hamiltonian
Hs ¼ ðω0=2Þσz þ ðωl=2ÞIz þ gσzIx þ Ω1ðtÞσx cos ½ϕðtÞ�,
where Ω1ðtÞ and ϕðtÞ are the modulated RF and modulated
phase of a general driving field. The functions ϕðtÞ and
Ω1ðtÞ are our control tools that are used in order to reach the
resonance condition in the small and large frequency
mismatch regimes respectively, and therefore enable us
to probe the nuclei parameters and polarize it in the high
magnetic field regime.
Small frequency mismatch.—In continuous dynamical

decoupling it is more beneficial to rely on a control by a
robust phase modulation (PM) than on a control by a noisy
amplitude modulation (AM) [37]. This concept was veri-
fied experimentally [32,38] and here we further develop it
to design efficient and robust control in the high magnetic
field regime when the frequency mismatch is small. This
scenario is relevant for a LF of ∼1–10 MHz. For example,
the LF of 13C (15N) at a magnetic field of 1T (1.5T) is
10 MHz (6.5 MHz). There are two key advantages of PM.
First, PM is much more stable than a noisy AM and
therefore results in longer coherence times. Second, the
extra frequency that is required to fulfil the resonance
condition (ωl −Ω1) originates only from the PM and
therefore does not require extra power beyond the power
limit of the bounded RF Ω1 [33].
We consider the following Hamiltonian of the NV

and the nucleus, H ¼ ðω0=2Þσz þ δBðtÞσz þ ðωl=2ÞIzþ
gσzIx þ ½Ω1 þ δΩ1ðtÞ�σx cos ½ω0t þ 2ðΩ2=Ω1Þ sinðΩ1tÞ�,
where δBðtÞ is the magnetic noise, Ω1 is the RF of
the drive, which defines the PM according to ϕðtÞ ¼
2ðΩ2=Ω1Þ sin ðΩ1tÞ, and δΩ1ðtÞ is the amplitude noise in
Ω1. The NV dynamics is modulated by two frequencies,
Ω1 and Ω2, and thus we may expect transitions to occur

whenever the resonance condition, Ω1 þΩ2 ¼ ωl, is met.
Indeed, this Hamiltonian results in double-dressed NV
states for which we have that [33] HII ≈ ðΩ2=2Þσz þ
ðωl=2ÞIz− ðg=2Þ½σþðeiΩ1t− e−iΩ1tÞþ σ−ðe−iΩ1t− eiΩ1tÞ�Ix,
where HII is the Hamiltonian in the second interaction
picture (IP) and in the basis of the double-dressed states.
From this expression it is seen that a resonance condition
appears when Ω1 þ Ω2 ¼ ωl (or when Ω1 −Ω2 ¼ ωl).
Even though the power of the driving field is ∝ Ω2

1 and
is independent of Ω2, higher Larmor frequencies than what
is available by the peak power in a common HH scheme
are reachable. While the modulation by the frequency Ω1

originates from AM and requires a power of ∝ Ω2
1, the

second modulation by the frequency Ω2 originates from the
PM and as such it is not associated with extra power.
Specifically, for Ω2 ¼ Ω1 the ratios of the peak power (the
maximal instantaneous power value) and the cycle power
[the power that is required for a complete energy transfer
(flip flop) between the NV and the nucleus] between a
common HH drive and a phase modulated drive are 4 and 2,
respectively [33]. Moreover, PM may result in significantly
prolonged coherence times due to the precise phase control
of microwave sources, and the elimination (to first order) of
amplitude fluctuations in Ω1 [33].
The above procedure is correct in the limit of Ω2 ≪ Ω1.

However, we aim to increase Ω2 as much as possible
without reducing the sensitivity. To this end, we have to
take into account the Bloch-Siegert Shift (BSS) due to the
counter-rotating terms of the second modulation Ω2, which
induces a shift of the resonance. In addition, this decreases
the coupling to the nucleus, and more importantly, the
coherence time of the NV as the decoupling effect of
the drive is not effective any more [Fig. 3 (blue)]. To
improve this, we suggest correcting the BSS when adjust-
ing the frequency Ω1 in the PM ϕðtÞ ¼ 2ðΩ2=Ω1Þ sin ðΩ1tÞ
and modify it to Ω̃1 ¼ 1

3
ðΩ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ω2

1 þ 3Ω2
2

p
Þ. In this

case, the resonance frequency is Ω̃1 þ Ω̃2 ¼ ωl, where

Ω̃2¼ðΩ2=2Þf1þ½ðΩ1þΩ̃1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

2þðΩ1þΩ̃1Þ2
q

�g [33].

In Fig. 2 we show simulation results [33] for the nucleus
polarization as function of Ω2=Ω1. In the main figure we
consider the strong coupling regime, where the polarization
time t ¼ 2π=g is much shorter than the decoherence time
of the NV center and hence, decoherence effects are
neglected. In the inset we consider the weak coupling
regime where noise decreases the polarization rate [33]. We
define the nuclear spin polarization, PN , as the probability
of the nuclear spin to be in its initial state j↑zi. Specifically,
we initialize the NV-nucleus state to jψ ii ¼ j↓ziNVj↑ziN ¼
j↓z↑zi and calculate the polarization according to PN ¼
jh↑z↑zjψij2 þ jh↓z↑zjψij2, where jψi is the joint NV-
nucleus state at the optimal polarization time. Hence,
PN ¼ 0 corresponds to optimal polarization and PN ¼ 1
corresponds to no polarization at all. While in the strong
coupling regime the correction always results in better
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polarization rates, in the weak coupling regime the advan-
tage of correction is lost at Ω2 ≈ 1.5Ω1. In Fig. 3 we show
the expected coherence times, T2, of the NVas a function of
Ω2=Ω1 [33]. Without the correction the optimal coherence
time is sharply peaked at Ω2=Ω1 ≈ 0.125 with T2 ≈ 330 μs
(not shown). The coherence time is reduced when Ω2 is
increased due to an amplitude mixing of ∝ ðΩ2=Ω1Þ
between the dressed states, which introduces back a first
order contribution of the drive noise ∝ ðΩ2=Ω1ÞδΩ1.
This decoherence is greatly mitigated by the correction
of the BSS up to Ω2 ≈Ω1, which results in an improve-
ment of 1 order of magnitude in the coherence times. With
the correction the optimal coherence time is peaked at

ðΩ2=Ω1Þ ≈ 0.4 with T2 ≈ 1000 μs. In this case, the coher-
ence time is mainly limited by the second order contribu-
tion of the drive noise ∼ðδΩ2

1=Ω2Þ. The BSS correction
enables us to further increase Ω2 and results in prolonged
NV’s coherence times and higher polarization rates.
Large frequency mismatch.—The natural way to com-

pensate for the frequency mismatch is to introduce a
detuning (δ) to the drive. This detuning induces an
extra modulation that creates an effective frequency offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

1 þ δ2
p

, which, in principle, can be as high as needed
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

1 þ δ2
p

≫ Ω1Þ. When the effective frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

1 þ δ2
p

is equal to the LF, the HH condition is fulfilled
and the electron-nucleus interaction is enabled [33].
This, however, comes with a price; the electron-nucleus
coupling strength is decreased by a factor of ∼ðΩ1=δÞ [33]
[Fig. 1(c)]. Here the decoupling effect of a resonant drive
vanishes and the NV’s coherence time approaches T�

2. In
[33] we show how to circumvent this by adding a second
drive. This scheme, however, could be extremely power
efficient; e.g., for δ ¼ 10Ω1 the ratios of the peak power
and the cycle power between a common HH drive and a
detuned drive are 101 and 10.1, respectively [33].
An alternative way to reach the resonance is to

modulate the amplitude of the drive. This AM gen-
erates higher harmonics of the modulation frequency that
can be tuned to be on resonance with the LF. We start
with the Hamiltonian H¼ðω0=2Þσzþðωl=2ÞIzþgσzIx þ
ΩðtÞσxcosðω0tÞ and set ΩðtÞ ¼ Ω0 þΩ1 cosðΩ2tÞ.
Moving to the IP with respect to H0 ¼ ðω0=2Þσz and
making the rotating-wave approximation (RWA) ðω0 ≫
jΩðtÞjÞ we obtain HI ¼ ½ΩðtÞ=2�σx þ ðωl=2ÞIz þ gσzIx,
which in the basis of the NV dressed states (x → z,
z → −x, and y → y) is given by HI ¼ ½ΩðtÞ=2�σz þ
ðωl=2ÞIz − gσxIx. We continue by moving to the second
IP with respect to H0 ¼ ½ΩðtÞ=2�σz þ ðωl=2ÞIz, which
results in HII ¼ −gðσþei½Ω0tþðΩ1=Ω2Þ sinðΩ2tÞ� þ H:c:Þ×
ðIþeiωlt þ I−e−iωltÞ. The exponent ei½Ω0tþðΩ1=Ω2Þ sinðΩ2tÞ�
contains the higher harmonics of Ω2, i.e., nΩ2, where n
is an integer. This can be seen by the equality
ei½Ω0tþðΩ1=Ω2Þ sinðΩ2tÞ� ¼ eiΩ0t

P
n¼þ∞
n¼−∞ ½inJnðΩ1=Ω2ÞeinΩ2tþ

H:c:�. We can therefore set the resonance condition to
Ω0 þ Ω2 ¼ ωl. Assuming the RWA ðΩ2 ≫ gÞ we get that
HII ≈ gJ1ðΩ1=Ω2ÞðiσþI− − iσ−IþÞ when the resonance
condition is fulfilled. In the regime of Ω2 ≫ Ω1,
J1ðΩ1=Ω2Þ ≈ ðΩ1=2Ω2Þ. Hence, the coupling strength is
similar to the one in the previous method; however, this
scheme is robust to magnetic noise. Numerical analysis of
this method is shown in Fig. 4. With a single AM the
method suffers from amplitude fluctuations in Ω0, which
could be eliminated by realizing this as a second drive from
a PM [33]. This scheme is also power efficient; e.g., for
Ω2 ¼ 9Ω0 the ratios of the peak power and the cycle power
between a common HH drive and an amplitude modulated
drive are 25 and 3.7, respectively [33].

FIG. 2. Polarization as a function of Ω2=Ω1 in the strong and
weak (inset) coupling regimes without BSS correction (blue) and
with BSS correction (green). Strong coupling regime: without
correction the polarization rate begins to sharply decrease at
Ω2 ≈ Ω1. The correction enables us to maintain good polarization
rates up to Ω2 ≈ 1.8Ω1. Weak coupling regime: The analysis
takes noise into account. The polarization is effective up
to Ω2 ≈ 1.4Ω1.

FIG. 3. Coherence time (T2) as a function of Ω2=Ω1. Without
the BSS correction (blue), at the regime of an efficient polari-
zation, T2 is decreased as Ω2 is increased. The optimal T2 is
sharply peaked at Ω2=Ω1 ≈ 0.125 with T2 ≈ 330 μs (not shown).
With the BSS correction (green), a long T2 time is maintained
while increasing Ω2. The optimal T2 is peaked at Ω2=Ω1 ≈ 0.4
with T2 ≈ 1000 μs. The coherence time is a crucial parameter in
the efficiency of control and estimation.
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Quantum sensing.—Addressability is the ability of a
probe to individually address and control nuclear spins,
which was discussed above. However, addressability is not
necessary for quantum sensing where, e.g., one is only
interested in estimating the LF, as in nano-NMR experi-
ments. The resolution of addressability is defined by the
ability to control a nucleus with a given frequency ωl, while
leaving nuclei with different frequencies outside of a
frequency width Δω (centered at ωl) unaffected. As shown
in Fig. 4 in blue, the addressability resolution is limited by
the coupling strength. This is because all frequencies within
a width of the coupling strength from the resonance will
couple to the probe. Hence, the stronger the coupling the
worse the resolution, and a larger band of frequencies will
be addressed by the probe.
However, when the NV is used to estimate the LF, one

would expect that the stronger the coupling the more
information acquired; an increased coupling strength should
improve the resolution and not limit it. The addressability
resolution limit could be overcome by designing the
Hamiltonian differently. In cases that control is not neces-
sary, and one is just interested in frequency estimation of the
nuclei, methods that are not limited by the coupling strength
could be designed. The difference between the methods is
analogous to the difference between Rabi and Ramsey
spectroscopy. While power is a limiting factor in the first
method (necessitating weak pulses), it poses no limitation in
the second method.
The addressability resolution problem occurs as the NV

coupling operator term is a σ� operator that is in charge of
energy transfer. This is crucial for control; however, it is not
needed for sensing. An interaction of the addressability

type, gðσ−Iþ þ σþI−Þ, transfers excitations between the
two spins as long as their frequency difference is smaller
than the coupling strength g. Thus, the target frequencies
within a spread of g are addressed by the probe. However,
an interaction of the type gσxðIþ þ I−Þ ¼ gσxIx could
be utilized to estimate the frequencies of the target spins
with a resolution that is not limited by the coupling strength
[39–41]. This can be achieved by transforming the σ−; σþ
operators into a σx (or σy) operator, which is doable as
σ� ¼ σx � iσy and σy could be eliminated with a suitable
control, e.g., by adding a strong σx drive that eliminates the
σy part. For the case of the low-frequency mismatch this
can be achieved by adding an extra drive on the NV, which
rotates at Ω2 [this amounts to Ωs cosðω0tÞ cosðΩ2tÞσx]. In
[33] we explicitly show that this results in an Hamiltonian
that can be used for sensing the LF, i.e., HI ≈ ðg=4Þ×
σz½Ix cosðδtÞ − Iy sinðδtÞ�, where δ ¼ Ω1 þ Ω2 − ωl. As
the extra term acts as a spin locking at Ωs, the robustness
of the methods is preserved. The classical version of this
Hamiltonian was used in [39–48] where it was shown
that the resolution is only limited by the clock and
signal coherence times. The resolution obtained by this
Hamiltonian, which is the generic sensing Hamiltonian, is
only limited by the coherence time of the nuclei and the
sensitivity is improved with the coupling strength [49].
The same can be done in the large frequency mismatch

regime. The interaction should be changed from the flip-
flop interaction gðσþI− þ σ−IþÞ to gσxIx by adding, e.g.,
a σx drive to the modulation. In this case the Hamiltonian
is transformed to [33] H ≈ gJ1ðΩ1=Ω2Þσx½Ix cosðδtÞ−
Iy sinðδtÞ�. The result of using this Hamiltonian for esti-
mating the nuclei’s frequencies is shown in Fig. 4. The
yellow line is the Fourier transform of the time series of NV
measurements for a scenario in which a few nuclei are
present at the three frequencies Ω0;Ω0 �Ω1. The width of
these peaks (one over the total experiment time) is narrower
than the peaks of the control method (blue line), which is
limited by the coupling strength.
The challenge of controlling and sensing high-frequency

nuclei under power limitations of the driving fields was
addressed both in the small and large frequency mismatch
regimes. We have designed schemes that are robust both to
magnetic field fluctuations and RF noise. The presented
protocols could potentially allow for the realization of
experiments in an important regime that is currently out of
reach and could considerably simplify state of the art
experiments.
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Ω0 �Ω2. The y axis corresponds to the occupation of the nucleus
when the initial state is the j↑zi state, i.e., PN ¼ 1. The main deep
is broader than the side deeps because the coupling at the
sideband frequencies is reduced. In contrast, the yellow line
represent the analysis of the quantum sensing Hamiltonian, which
is much narrower and is not limited by the coupling strength. The
numerical simulations were performed with Ω0 ¼ 1.5 MHz,
Ω1 ¼ 0.1 MHz, Ω2 ¼ 1 MHz, and g ¼ 0.05Ω2.
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Note added.—Recently we became aware of a related
independent work by Casanova et al. [50].
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