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We study the quantum dynamics of fractional excitations in quantum spin ice. We focus on the density of
states in the two-monopole sector, ρðωÞ, as this can be connected to the wave-vector-integrated dynamical
structure factor accessible in neutron scattering experiments. We find that ρðωÞ exhibits a strikingly
characteristic singular and asymmetric structure that provides a useful fingerprint for comparison to
experiment. ρðωÞ obtained from the exact diagonalization of a finite cluster agrees well with that, from the
analytical solution of a hopping problem on a Husimi cactus representing configuration space, but not with
the corresponding result on a face-centered cubic lattice, on which the monopoles move in real space. The
main difference between the latter two lies in the inclusion of the emergent gauge field degrees of freedom,
under which the monopoles are charged. This underlines the importance of treating both sets of degrees of
freedom together, and it presents a novel instance of dimensional transmutation.
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The existence of objects with fractional quantum num-
bers is by now well established across a range of topo-
logically ordered systems, most notably in quantum spin
liquids (QSL) [1–4]. Their signatures in experiments are
not entirely clear, in particular to what extent they behave
akin to traditional low-energy quasiparticles [5,6]. There is
no simple principle of continuity to a noninteracting limit
to appeal to, unlike in the case of a Fermi liquid [7]. This
complicates their theoretical description, except in the
fortunate cases where an exact solution is available,
typically at the expense of trading solubility for genericity.
The central challenge is to capture the dynamics of the

fractional quasiparticle alongside that of the emergent
gauge field under which it is charged. Mean-field, parton,
or ad hoc approaches to achieving this are typically not
controlled [8], so that it is, e.g., not clear what fraction
of the excitation spectrum that the weakly interacting
quasiparticles, even where they exist, occupy in the
end [9,10].
Here, we look for qualitative signatures of the quantum

dynamics of fractionalized quasiparticles not in the asymp-
totic low-energy limit, which may at any rate be hard to
probe experimentally, but across their full bandwidth. The
hope is that gross features and characteristic constraints on
their exotic properties may thus be rendered accessible.
We focus on quantum spin ice (QSI), one of the simplest

and longest-studied QSLs. Its classical limit, classical spin
ice (CSI), is well understood [11]: the macroscopically
degenerate ground state of CSI consists of spin configu-
rations satisfying the “2-in 2-out” ice rule for all the
tetrahedra. The fractional nature of the elementary excita-
tions already shows up in CSI, where a single spin flip out
of a ground state decomposes into a pair of tetrahedra

(“magnetic monopoles”) breaking the ice rule. While the
monopoles are a priori static in this classical limit, quantum
perturbations turn CSI into QSI, enabling these fractional
objects to execute coherent quantum motion [5,10,11].
Recently, the coherent motion of quantum monopoles

has received increasing attention. On the experimental side,
microwave experiments [10] were interpreted in terms of an
inertial mass of quantum monopoles in Yb2Ti2O7, conclud-
ing that meff ∼ 2000me, with thermal conductivity measure-
ments [5] suggesting a long mean-free path, implying highly
coherent nature of quantum monopoles. Inelastic neutron
scattering studies have probed the excitation spectrum of
Yb2Ti2O7 [12,13], Pr2Zr2O7 [6], Pr2Sn2O7 [14], and
Pr2Hf2O7 [15,16]. Theoretically, quantum monopoles were
explored through a mapping to a Bethe lattice [17,18], an
effective one-spinon theory [19], quantum Monte Carlo
(QMC) simulations [20], and the exact diagonalization of
a two-dimensional checkerboard system [9].
This Letter first presents the density of states (DOS) of

the two-monopole sector from exact diagonalization, which
we argue reliably approximates the thermodynamic limit.
This DOS turns out to be far from that of a free particle: the
coupling to the background gauge field is essential, leading
the DOS to acquire a stronger singularity, reflected in a
discontinuous increase at the edge of the wave-vector-
integrated dynamical structure factor. We capture these
features, which provide characteristic fingerprints for
experimental comparisons, analytically by constructing
and solving a hopping problem on a Husimi cactus. This
agrees quantitatively with the numerical results, unlike the
qualitatively disagreeing analogous treatment of monop-
oles hopping freely on the face-centered cubic lattice of
tetrahedra. Further, we show that interactions between
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monopoles do not change these results qualitatively, but
they do have a visible impact in the difference between
contractible and noncontractible monopole pair
configurations.
Model:—We consider a spin-1=2 quantum XXZ model

on the pyrochlore lattice, as a minimal model for QSI.

H ¼ HCSI þHex ¼
X
hi;ji

JzS
z
iS

z
j − J�ðSþi S−j þ S−i S

þ
j Þ: ð1Þ

The first term (HCSI) is the antiferromagnetic Ising cou-
pling (Jz > 0) enforcing the ice rules, and the second term
(Hex) induces quantum fluctuation. The spin quantization
axes coincide with the local ½111� direction. The
Hamiltonian (1) serves as a microscopic model for non-
Kramers magnets [21], such as the potential QSI com-
pounds Pr2ðZr; Sn;HfÞ2O7 [6,14–16].
Here, Sztot ¼

P
iS

z
i is a conserved quantity. We take

J� < 0, and consider jJ�j ≪ Jz. For CSI (J� ¼ 0), the
ground states satisfy the ice rule:

P
j∈nS

z
j ¼ 0 for each

tetrahedron, n, also implying Sztot ¼ 0. The first excited
level, at energy Jz above the ground state, is also degen-
erate, composed of the states with one pair of monopoles,
i.e., two tetrahedra with

P
j∈nS

z
j ¼ �1.

The ground-state degeneracy is lifted for nonzero J�,
yielding a ground state splitting of order of ðjJ�j3Þ=J2z . The
splitting of the excited level is parametrically larger, of
order jJ�j, suggesting to focus the search for signatures of
quantum effects on the excitation spectrum rather than the
ground state manifold.
The dynamics of a monopole pair can thus be studied by

restrictingHex to the space of two monopoles, enforced by
projection operator P, yielding a simple Heff in degenerate
perturbation theory

Heff ¼ −J�
X
hn;n0i

Pða†nσxjσxj0an0 þ b†nσxjσ
x
j0bn0 þ H:c:ÞP: ð2Þ

We consider the total spin sector Sztot ¼ 1, and regard the
tetrahedron with

P
j∈nS

z
j ¼ 1 as a monopole. To describe

the two-monopole state, we divide the tetrahedra into two
groups, upward and downward [Fig. 1(a)], according to
their orientations. Each group of tetrahedra defines an fcc
lattice. We denote a†n (b

†
n) as creation operator of monopole

on an upward (downward) tetrahedron, n. The spin
exchange flips a pair of spins, hopping a monopole to a
neighboring tetrahedron of the same group [Fig. 1(a)],
without disturbing the ice rule for any other tetrahedra.
The dynamical susceptibility, given in terms of the

eigenstates jmi of (1) with eigenenergies Em as

χijðωÞ ¼
X
m;m0

e−βEm0 − e−βEm

Z

hmjS−i jm0ihm0jSþj jmi
ω − ðEm0 − EmÞ þ iδ

: ð3Þ

is connected to the dynamical structure factor, SqðωÞ,
accessible in inelastic neutron scattering: the local suscep-
tibility, χiiðωÞ is the q-integrated structure factor,

1

N

X
q

SqðωÞ ¼
π

1 − e−βω
ImχiiðωÞ; ð4Þ

with N the number of spins.
In the temperature range ½ðjJ�j3Þ=J2z � ≪ T ≪ Jz, the

number of excited monopoles is small in equilibrium.
Quantum coherence is not well developed in the ground
state sector, allowing us to replace the summation overm in
Eq. (3) by a simple average over the degenerate CSI ground
states for which we set Em ¼ 0. The operation of Sþi , by
flipping a spin at site i, creates a pair of monopoles, one
each on the upward and downward tetrahedra sharing site i.
jm0i and Em0 ¼ Jz þ εm0 in Eq. (3) are obtained from
solving Heff , so that

FIG. 1. (a) Pyrochlore lattice. fa⃗1; a⃗2; a⃗3g are the lattice vectors
of the fcc lattice of upward tetrahedra. A monopole on an upward
tetrahedron, n0, hops to the neighboring upward tetrahedron, n,
by the process a†nσxjσ

x
j0an0 in Eq. (2), by flipping two intervening

spins j and j0. (b) Schematic picture of the Husimi cactus. (c),
(d) Pyrochlore lattice seen along the ½111� direction. (c) A
monopole hops twice following the solid arrows back to the
initial tetrahedron. Note that the spins also return to their initial
configuration, Similar three-step motions are possible for the
other two choices of initial hopping directions (dashed lines).
These hopping processes imply a mapping to the Husimi cactus,
(b). (d) If a monopole comes back to the initial tetrahedron along
a larger loop, it goes along with flipping the six spins marked by
dashed circles.
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χiiðωÞ ¼ −
1

NCSI

X
m∈CSI

X
m0

hmjbn0S−i anjm0ihm0ja†nSþi b†n0 jmi
ω − ðJz þ εm0 Þ þ iδ

;

ð5Þ

and the two-monopole density of states,

ρðωÞ ¼
X
m

δðω − ðJz þ εmÞÞ: ð6Þ

We thus need all eigenstates of Heff Hamiltonian (2) in
the two-monopole Hilbert space, which we construct
starting from one spin ice ground state by first flipping
an arbitrary spin. From this initial state, we generate the
other two-monopole states by considering all possible
exchange processes. As far as we have numerically con-
firmed, such monopole motion is ergodic, so that the
resultant Hilbert space depends neither on the initial spin
ice configuration, nor the initial spin flip. The ergodicity
also takes care of the average over classical spin ice
configurations in Eq. (5). Our 32-site cluster has periodic
boundary conditions with lattice periods, 2a⃗1; 2a⃗2, and 2a⃗3
[Fig. 1(a)]. To fully diagonalize the Hamiltonian (2), we
consider 8 separate momentum sectors each of dimension
12348, comfortably within the range of full diagonaliza-
tion; it takes about 10000 sec. with serial computation by
Intel Xeon E5-2695 processors.
The resulting local susceptibility, χiiðωÞ in Fig. 2(a) with

jJ�j ¼ 1 as energy unit, has a highly asymmetric spectrum:
a steep rise at the low-energy spectral edge, ω ¼ −6, is
followed by a peak aroundω ∼ 1 and a tail to higher energy.
This asymmetry may be used to determine the sign of J� in
experiment, as flipping the sign of J� amounts to inverting
the x-axis, ω − Jz → −ðω − JzÞ.
The local susceptibility χiiðωÞ agrees remarkably well

with the two-monopole DOS ρðωÞ [Fig. 2(a)]. Since
monopoles hop on the fcc lattice of tetrahedra, at first
sight, one might expect the tight-binding spectrum of the
fcc lattice to yield a useful approximation for ρðωÞ.
However, we find that the coupling to background spin
ice changes the spectrum considerably.
To see this, consider the motion of a single monopole in

detail. As shown in Fig. 1(c), it can hop by flipping one
of the three majority spins of the tetrahedron it hops from,
and the corresponding spin of a tetrahedron it hops to. By
two further hops, the monopole can return to the initial
tetrahedron. Remarkably, after these three hops, not only
the position of the monopole, but also the background spin
configuration, remain unchanged. A monopole can also
return to its initial location via a larger loop, Fig. 1(d).
However, in this case, the background spin configuration
changes.
These observations motivate us to formulate a hopping

problem on the graph of many-body states. Each site of the
graph represents a spin configuration and a bond connects
two sites whenever Heff has a matrix element between the

corresponding configurations. The monopole motion con-
sidered in Fig. 1(c) implies the existence of closed loops of
a length 3 on this graph. Omitting any further nontrivial
closed loops, the graph in Fig. 1(b), known as Husimi
cactus [22–24], results.
This turns out to work much better than the fcc analysis,

as we show in Fig. 2(a): the two-monopole DOS of the
tight-binding model on the Husimi cactus quantitatively
reproduces ρðωÞ, and hence χiiðωÞ.
The analysis of the Husimi cactus follows that of the

motion of a mobile particle in an ice-rule potential on a
simple Bethe lattice [25]. The on site Green’s function
GðεÞ ¼ ½1=ðε − 6Þ�fð3=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðε − 5Þ=ðεþ 3Þ�p

− ½1=2�g
gives the one-particle DOS

ρð1ÞHCðεÞ ¼
3

2π

1

6 − ε

ffiffiffiffiffiffiffiffiffiffiffi
5 − ε

3þ ε

r
; ð7Þ

for details, see Supplemental Material [26]. Figure 2(b)

shows ρð1ÞHC alongside ρð1Þfcc for the fcc lattice.
These two curves exhibit crucial differences in (i) band-

width and (ii) the nature of the singularity at the lower band
edge. (i) The Husimi cactus bandwidth (¼ 8) is halved

Sii( )
ED

Bethe

−ω

χ (ω)

ω

ρ (ω)
ρ (ω)

ρ (ω)

ρ (ω)
ρ (ω)

(a)

(b)

(c)

FIG. 2. (a) χiiðωÞ and two-monopole density of states, ρðωÞ,
from exact diagonalization of a 32-site cluster. ρðωÞ of the tight-
binding model on Husimi cactus and fcc lattice are shown for
comparison. (b) One-particle density of states on Husimi cactus
and fcc lattice. (c) Schematic picture of the wave function at the
lower spectral edge ω ¼ −6, depicted on the graph of many-body
states.

PHYSICAL REVIEW LETTERS 122, 117201 (2019)

117201-3



compared with the fcc lattice (¼ 16), due to the constraints
imposed on monopole hopping by the background spin
configuration, which allow flips only of majority spins.

(ii) The lower-edge singularity, ρð1ÞfccðεÞ is only a logarithmic
divergence, ∝ − logðε − εminÞ with εmin ¼ −4, the usual
van-Hove singularity in three dimensions. By contrast, the
onset at εmin ¼ −3 for the Husimi cactus is more singu-
lar, ∝ ðε − εminÞ−1=2.
Note that this square-root singularity in the density of

states is that characteristic of free particles in one dimen-
sion, even though the Husimi cactus, for which we have
obtained this analytical result, is infinite dimensional in the
same sense of the more familiar Bethe lattices or Cayley
trees. At the same time, the physical motion of the
monopoles actually takes place in three-dimensional real
space. This strikes us as notable in that the strong coupling
of the monopoles to the gauge field background in spin ice
leads to an effective dimensional transmutation, or perhaps
more accurately, dimensional diversification.
The two-monopole DOS follow from the convolutions

ρHC=fccðωÞ≡
Z

dερð1ÞHC=fccðω − εÞρð1ÞHC=fccðεÞ; ð8Þ

plotted in [Fig. 2(a)]. This treats the monopoles are free
particles, ignoring their interaction, as discussed below.
ρHCðωÞ reproduces the two-monopole DOS of exact

diagonalization to a remarkable accuracy. This agreement
implies several things. First, the result of exact diagonal-
ization of the 32-site cluster is likely already a good
approximation of thermodynamic limit, as the Husimi
cactus calculation is not subject to finite-size effects.
The bandwidth is also comparable to that obtained by
QMC simulations [20]. Second, combined with the agree-
ment of χiiðωÞ and two-monopole density of states, the
analytic result also accurately accounts for the experimen-
tally observable q-integrated dynamical structure factor.
This suggests looking in experiment for the promi-

nently singular edge structure of the spectrum, which
corresponds to a step discontinuity. It shows a steep rise at
the band edge ε ¼ −6, in contrast to the two-particle DOS
obtained from the fcc lattice via Eq. (8). This reflects the

stronger singularity of the one-particle DOS, ρð1ÞHCðεÞ ∝
ðε − εminÞ−1=2. For the size of the step, and hence the edge
value of χiiðωÞ, we obtain

ρHCðω → −6þÞ ¼ 2

9π
∼ 0.07077: ð9Þ

It is even possible to obtain the one-monopole eigen-
function explicitly at this lower band edge. The construc-
tion is analogous to the flat band of the tight-binding model
on line graphs [27,28]. For its procedure, see for example,
Ref. [29]. On the graph shown in Fig. 2(c), the weight of
eigenfunction ψ j at site j is such that (a) ψ j ¼ 0 or�1, and

(b) on all the triangles, ψ j sums up to zero. This con-
struction gives an exact eigenstate of the tight-binding
model on the Husimi cactus, with eigenenergy, ε ¼ −3.
Mapping back to the original pyrochlore lattice, the
corresponding many-body state describes the approximate
one-monopole eigenstate of Hamiltonian (2), given large
loops are ignored.
We now turn to the effect of interactions between

monopoles. If monopoles are far apart, we can approximate
their collective state as a direct product of the one-
monopole states. However, if they come closer—and they
do, as they are always pair created—it is not possible to
ignore their interactions. In classical spin ice, these lead to
nontrivial classical spin liquid phases [30], a liquid-gas
phase transition [31,32], and collective phenomena in
equilibrium and nonequilibrium settings [30,33,34].
Here, we examine the pairing tendency of the monopoles.
Monopole encounters take two forms on a lattice,

depending on whether the tetrahedra that host them share
a minority or majority spin [Figs. 3(b) and 3(c)]. The
former and the latter are called noncontractible and
contractible pair, respectively [35]. Both situations can
arise as components of the same eigenstate of Heff , so that

jmi ¼ aðmÞjψmi þ aðmÞ
nc jϕnc

m i þ aðmÞ
c jϕc

mi: ð10Þ

Here, jϕcðncÞ
m i is the normalized vector composed only of

the states with a (non)contractible pair, and jψmi contains
the separated monopoles. To examine the pairing tendency
in different energy scales, we plot the pair-weighted two-
monopole DOS,

ρcðncÞðωÞ≡
X
m

jaðmÞ
cðncÞj2δ(ω − ðJz þ εmÞ); ð11Þ

compared to the total two-monopole DOS in Fig. 3(a).
All three look similar overall. For a detailed comparison,

we use rescaled ρ̃ncðωÞ ¼ cρnc, so that
R
ρ̃ncðωÞdω ¼R

ρðωÞdω ¼ 1, and compare ρ̃ncðωÞ and ρðωÞ in the inset
of Fig. 3(a). There, we find a spike for ρ̃ncðωÞ at the low-
energy edge.
In contrast, on the effectively loopless Husimi cactus, the

two types of monopole pairs are never connected, and two-
monopole states thus define two separate sectors. In the
noncontractible sector, two monopoles are invisible to
each other, Fig. 3(d). Accordingly, a two-monopole state
in this sector can be expressed as a direct product of one-
monopole states on the Husimi cactus, with the result that
the convolution formula (8) is exact; i.e., the two curves in
the inset of Fig. 3(a) coincide perfectly.
The low-energy uprise of ρ̃nc, compared with ρðωÞ,

means that the loops of the pyrochlore lattice effect an
attraction between monopoles for noncontractible pairs at
low-energy. Such an attractive force is in principle inter-
esting: in light of the possible softening of monopoles.
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if the quantum exchange coupling, J�, is sufficiently large,
the system may eventually show an instability to a crystal
phase involving noncontractible monopole pairs.
In summary, we have studied the quantum dynamics of

gauge-charged fractional excitations in quantum spin ice.
We have identified the two-monopole DOS, ρðωÞ, as a
quantity that both is experimentally accessible and exhibits
features characteristic of the fractionalized setting. These
include a marked asymmetry and a singular edge structure,
along with a spike related to interactions. We thus suggest
extracting this quantity from inelastic neutron scattering
data. These features arise because of the rearrangement of
the gauge field degree of freedom, the “Dirac strings”
attached to the monopoles [32], which goes along with
monopole motion. From a methodological perspective, the
success of our Husimi cactus treatment suggests that we
have identified a setting in which the motion of an
excitation on the graph of many-body states—of autono-
mous interest in the separate context of, e.g., many-body
localization [36,37]—appears to be a more natural descrip-
tion than that of motion in real space.
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