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A topological superconductor ring is uniquely characterized by a switch in the ground state
fermion number parity upon insertion of one superconducting flux quantum—a direct consequence of
the topological “parity anomaly.” Despite the many other tantalizing signatures and applications of
topological superconductors, this fundamental, defining property remains to be observed experimen-
tally. Here we propose definitive detection of the fermion parity switch from the charging energy,
temperature, and tunnel barrier dependence of the flux periodicity of two-terminal conductance of a
floating superconductor ring. We extend the Ambegaokar-Eckern-Schön formalism for superconductors
with a Coulomb charging energy to establish new explicit relationships between thermodynamic and
transport properties of such a ring and the topological invariant of the superconductor. Crucially, we
show that the topological contribution to the conductance oscillations can be isolated from Aharonov-
Bohm oscillations of nontopological origin by their different dependence on the charging energy or
barrier transparency.
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Topological superconductors (TSCs) are expected to
support Majorana bound state excitations with non-
Abelian statistics that might ultimately be harnessed
for error-resistant quantum information processing
[1–12]. Many simple, canonical examples of TSCs
have been theoretically formulated in one- and two-
dimensional time-reversal-breaking superconductors
(i.e., in class D) [13–16], and several experiments now
strongly suggest these have been realized in proximitized
semiconductor nanowires among other systems [17–28].
However, despite the exciting progress that has been
made, the experimental characterization of candidate
TSCs still admits some stubborn controversy. To date,
most evidence comes from local probes, such as zero-bias
anomalies in transport or excess zero-energy density
of states, which indicate the presence of bound states
[17–28]. The origin of controversy, though, is that any
bound state can always be decomposed, formally, into a
pair of Majorana states so that even prima facie dramatic
transport phenomena such as the recently observed
quantized zero-bias peak or an anomalous temperature
scaling of a peak over a large temperature range can
arise from a plausible “quasi-Majorana” situation where
the probe predominantly couples to just one Majorana
component of a bound state that, nevertheless, is not of
topological origin, and does not have exponential-in-
length insensitivity to local perturbations [29–35].
Alternative methods to certify the existence of TSCs

are therefore desirable. The fractional Josephson effect
(where the current-flux relationship has a 2Φ0 perio-
dicity, with Φ0 ¼ h=2e being the SC flux quantum) at a

junction between topological superconductors has a
particular appeal [36,37]. But in practice measuring
this effect requires the junction to remain in a fixed
fermion parity state and therefore must be observed at
frequencies higher than the inverse parity lifetime
[14,15,36–39]. In turn, ac measurement leads to com-
plications such as Landau-Zener transitions [40], which
can yield a false positive in a topologically trivial state.
The fractional Josephson effect, however, is merely an
avatar of a more fundamental equilibrium topological
property: the Z2 ground state fermion parity of a TSC ring
switches under the insertion of each SC flux quantum
[36,41–46].
In this Letter we describe a definitive transport meas-

urement of this fermion parity switch. The essential
principle is that a Coulomb charging energy EC promotes
the parity anomaly into a genuine 2Φ0 spectral periodicity
[44] (this is also related to its role in “Majorana telepor-
tation” [47]), and this can be distinguished from conven-
tional Aharonov-Bohm (AB) oscillations (which share the
same periodicity) since the latter have no such dependence
on EC. To investigate this situation quantitatively, we have
generalized the Ambegaokar-Eckern-Schön (AES) model
to the case of a topological superconductor ring tunnel
coupling to external metallic leads. In this formalism we
find that we can explicitly relate thermodynamic properties
of the ring to the topological invariant, i.e., the ground state
fermion parity.
The full Hamiltonian for the Coulomb blockaded nor-

mal-superconductor-normal (NSN) junction illustrated in
Fig. 1 is
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HT ¼ −tψ†
LðLÞψðrLÞ − tψ†

RðRÞψðrRÞ þ H:c: ð1Þ

Hnw is the semirealistic Majorana nanowire model [14,15]
placed on a ring geometry, although we emphasize that the
microscopic Hamiltonian for the SC ring will not be so
essential in what follows. Hg describes an attractive, local
pairing interaction, and HC is the global charging energy
relative to an induced charge Ng. The Coulomb blockaded
SC ring is weakly coupled to external leads on the left (L)
and right (R) side, with typical lead (Hleads) and coupling
(HT) Hamiltonians.
Large EC and EC ¼ 0 limits.—The conductance in each

of these cases can be understood qualitatively as shown in
Fig. 2. We first consider large EC [22,48] and an idealized
low-energy limit (not essential for later) of the microscopic
model: a single subgap state bound to the junction with
energy δðΦÞ.The Bogoliubov–de Gennes (BdG) energy
spectrum is Φ0 periodic in both the topological and trivial
cases, but the former has a parity switch and the latter does
not [Figs. 2(a) and 2(b)]. In a conventional NSN Coulomb
blockade, sharp zero-bias conductance peaks occur when
the induced charge eNg is tuned to degeneracy between
charge states of the island separated by 2e and Andreev
reflection (transferring a charge-2e Cooper pair to the
island) is enabled. If for any flux Φ the energy of the
subgap state is lower than the charging energy of those two
degenerate states [Figs. 2(c) and 2(d)], then Andreev

conductance is suppressed as the island relaxes to the
new nondegenerate ground state at this formerly resonant
value of induced charge (Vg ¼ V�

g). Figures 2(e) and 2(f)
show schematically that even though the BdG energy
spectrum δðΦÞ is Φ0 periodic, the spectrum of HC in the
presence of this subgap state, and the corresponding
conductance, need not be; in the topological case the
conductance period is doubled.
By setting EC to zero, on the other hand, there is no

Coulomb blockade of Andreev processes. The conductance
for the two-terminal junction with a floating superconduc-
tor is [49–51]

G ¼ e2

h
gLLgRR − gLRgLR

gLL þ gRR − gLR − gLR
: ð2Þ

SC

normal lead normal lead
(L) (R)

FIG. 1. Schematic of a proposed two-terminal transport
experiment: a floating superconductor ring (yellow) is coupled
to two normal metallic leads (blue). An infinitesimal bias voltage
V ¼ 0þ is applied across the leads. An insulating junction (gray)
is present in the middle of the ring, and the enclosed magnetic
flux Φ varies continuously along with the energy δðΦÞ of an
Andreev bound state at the junction.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. Large and no charging energy limits. (a),(b) Energy
spectra for the bound states at the junction of a topological or
trivial SC ring. (c),(d) Evolution of the energy of the N þ 1
charge state as a function of the magnetic flux (Φ). Each color
line corresponds to the color point in the spectra in (a) and (b),
and V�

g represents the resonance point at which the N and N þ 2
charge states are degenerate. (e),(f) Conductance for the NSN
junction with strong Coulomb blockade. Topological (trivial) SC
shows 2Φ0 (Φ0) periodicity. (g),(h) Conductance for the NSN
junction with no Coulomb blockade. Here, the short (long) SC
ring shows 2Φ0 (Φ0) periodicity in conductance, regardless of SC
being topological or trivial.
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Here, gLL (gRR) is the dimensionless local conductance for
the left (right) lead, while gLR (gRL) is the dimensionless
conductance from the right (left) lead to the left (right) lead.
In the short ring limit, the conductance for the NSN
junction is always 2Φ0 periodic, regardless of the SC ring
being in the topological or trivial phase [Fig. 2(g)], as
single-quasiparticle interference processes contribute to all
gαβ. In the long ring limit, single-quasiparticle interference
is generally suppressed. As the transport coefficients are
associated with the BdG energy spectrum only, which isΦ0

periodic, conductance for a long SC ring is likewise Φ0

periodic [Fig. 2(h)]. Thus, the conductance of the NSN
junction absent from charging energy cannot distinguish
between a topological or a trivial origin (i.e., arising from
a short ring, or low-energy states due to disorder or order
parameter fluctuations) of the doubled periodicity.
Generalized AES model.—To study the properties of the

superconductor ring of Fig. 1 beyond the qualitative limits of
the previous section, we analyze Eq. (1) in an imaginary-
time path integral formulation in the form of AES [52].
Details are in Ref. [53], and we outline the procedure here.
The partition function of the system can be written as
Z ¼ Tre−βH ≡ R

Dψ̄Dψe−S½ψ̄ ;ψ �. The infinite leads are
replaced by self-energies ΣαðτÞ ¼ ½−Γα=β�=½sinðπτ=βÞ�.
For the quartic terms Hg and HC, we perform the standard
Hubbard-Stratonovich transformations to replace them
with an imaginary-time-varying SC pairing potential
Δðx; τÞeiϕðx;τÞ and an electrostatic potential VðτÞ tracking
total charge fluctuations, and to make the problem tractable,
we focus on fluctuations around the saddle point with
constant Δðx; τÞ ¼ Δ0, valid for T ≪ Δ0, and ϕðx; τÞ ¼
ϕðτÞ. Note that the effect of the magnetic flux threading
through the ring is now absorbed in Hnw.
To eliminate the ϕ dependence from the effective fermion

Hamiltonian, we make a gauge transformation to the
fermion fields ψðx; τÞ → ψ 0 ¼ expðiϕ=2Þψ . However, we
observe that this results in an atypical boundary condition
for fermions: ψ 0ðβÞ¼−expðiπWÞψ 0ð0Þ, where W ¼R β
0 dτð∂τϕÞ=2π ¼ ½ϕðβÞ − ϕð0Þ�=2π is the integer winding
number of the phase field. In other words, ψ 0 is antiperiodic
or periodic in β depending on whether the winding
numberW is even or odd. This gauge transformation further
results in an effective chemical potential variation
δμ ¼ ið∂τϕ=2þ VÞ. Fixing δμ ¼ 0, in the same saddle
point approximation, results in the Josephson relation
VðτÞ ¼ −∂τϕ=2 locking charge and phase fluctuations,
after which we can finally integrate out the quadratic
fermion fields.
Following these mostly standard manipulations, we

begin to approach one of our central results: the only
remaining degree of freedom in the effective action is the
phase variable, and the partition function can be decom-
posed into discrete topological sectors indexed by W.
Formally, then, the partition function is written as

Z ¼
X
W

ZW ¼
X
W

ZBdG
W

Z
W
Dϕe−SW ½ϕ�; ð3Þ

where, first, ZBdG
W results from integrating out the ψ fields

subject to the boundary condition stated above. Originating
from the correspondence between boundary condition (and
thus Fourier expansion in boson or fermion Matsubara
frequencies) and winding number, we obtain that the
topological invariant enters the partition function explicitly,
depending on the parity of W,

ZBdG
evenW ¼

Y
ε>0

2 cosh
�
βε

2

�
; ð4Þ

ZBdG
oddW ¼ ðsgnPfHBdGÞ

Y
ε>0

2 sinh

�
βε

2

�
; ð5Þ

where HBdG is the mean-field quadratic Hamiltonian
appearing in the action after the Hubbard-Stratonovich
transformation, written in the Majorana basis, and ε are its
positive eigenvalues. It is useful at this point to note that
there is no direct correspondence between winding number
and the parity of occupied quasiparticle states, so this
decomposition is conceptually distinct from prior works
where the partition function is written as a sum of odd and
even quasiparticle occupation parity sectors. We do re-
cover, however, an equivalent partition function (see, e.g.,
Ref. [54]) in the appropriate EC ¼ 0 limit.
Next, the remaining effective action for the phase,

SW ½ϕ� ¼ S0W ½ϕ� þ SleadsW ½ϕ�, consists of the familiar “par-
ticle on a ring” (N.B., in imaginary time, rather than
real space) with a topological term proportional to the
induced charge,

S0W ½ϕ� ¼
Z

dτ
ð∂τϕÞ2
4EC

− iπNgW; ð6Þ

and a dissipative contribution arising from the tunnel
coupling to the external leads,

SleadsW ½ϕ� ¼ −
1

2
Tr logð1 −GSCΣÞ

≃ g0

Z
dτ1dτ2
β2

1 − cos½ϕðτ1Þ − ϕðτ2Þ�
sin2½πðτ1 − τ2Þ=β�

; ð7Þ

where g0 ¼ ðgLL þ gRRÞ=2 is the dimensionless local
conductance averaged over left and right leads. We have
assumed that the tunneling strength between the SC island
and the leads Γα is weak, and that the Green’s function of
the SC islandGSCðx; τÞ is local in both space and time [53].
Summarizing so far, we have derived an effective action

in the form of the AES model, and in doing so we made
manifest the relationship between the imaginary-time wind-
ing number of the effective phase degree of freedom and the
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ground state parity of the superconductor, expressed as
Kitaev’s topological invariant [36]. The charging energy
controls the relative contribution of different winding
number sectors to the full partition function. Therefore,
flux period doubling arising from the topological parity
switch has explicit Coulomb dependence, whereas any
conventional Aharanov-Bohm periodicity appears already
in Z0 with no dependence at all on EC. In other words,
topological and nontopological period doubling can be
disentangled even in a device where the latter is present.
Measurement.—Like the partition function itself, any

equilibrium observable can be expanded in W sectors
and evaluated independently in each. To facilitate this,
for each W we can take ϕðτÞ ¼ 2πWτ=β þ δϕðτÞ, where
δϕð0Þ ¼ δϕðβÞ, so all the winding is contained in the first
part. With this substitution,

S0W ½ϕ� ¼
π2W2

βEC
− iπNgW þ

Z
dτ

ð∂τδϕÞ2
4EC

; ð8Þ

which heavily suppresses large winding number contribu-
tions for intermediate temperatures EC ≲ T ≪ Δ0.
Continuing in this regime, we also obtain to zeroth order
in δϕ that SleadsW ¼ 2g0jWj, so that, approximately,

Z�1=Z0 ≈ ðsgnPfHBdGÞ
Y
ε>0

2 tanh

�
βε

2

�

× exp ð�iπNgÞ exp
�
−

π2

βEC
− 2g0

�
; ð9Þ

and so any ground state parity dependence can be equiv-
alently eliminated by (i) lowering EC, (ii) increasing
temperature, or (iii) increasing the barrier transparency
and therefore g0, all of which tend to favor a pinned
phase ϕ.
To quadratic order in δϕ we next calculate the zero-bias

conductance of the device in Fig. 1 as [53,55]

G ≈ g0heiϕðβ=2Þ−iϕð0Þi

≈ G0 þ ðG1 −G0Þ
Z1

Z0

þ ðG−1 −G0Þ
Z−1

Z0

; ð10Þ

up to exponentially small corrections in g0 and ðβECÞ−1.
Equations (9) and (10) illuminate the behavior of the
weakly Coulomb blockaded SC ring. As the ground state
parity of the SC ring is now contained in the ratio Z�1=Z0,
when the charging energy EC goes to zero, this ratio is
exponentially suppressed. Correspondingly, the conduct-
ance without Coulomb blockade cannot give any informa-
tion about the ground state parity of the SC ring. Instead,
the conductance without Coulomb blockade is fixed by
the BdG spectrum and quasiparticle wave functions of the
isolated ring. G0 in Eq. (10) will be Φ0 (2Φ0) periodic,
when the length of the ring is long (short) compared to the

coherence length and the AB effect is suppressed (promi-
nent). This asymptotic behavior based on our partition
function calculation is consistent with the discussion
following Eq. (2).
In Fig. 3, we plot the conductance difference after

flux insertion, Gð0Þ −GðΦ0Þ, as a function of the lead-
SC interface conductance g0 (since we are not in the strong
Coulomb blockade limit, this is calculated at Ng ¼ 0). A
nonzero value of this conductance difference is a direct
indication of 2Φ0 periodicity, and g0 is realistically tunable
by a tunnel barrier. We consider first a short SC ring (it does
not matter if the SC is topologically trivial or nontrivial)
without Coulomb blockade and calculate the conductance
using Eq. (2). The resulting conductance difference is
shown by the blue line in Fig. 3. The signal of trivial
AB-induced 2Φ0 periodicity is monotonically increasing
with the junction conductance g0. For comparison, for the
NSN junction with finite charging energy and topological
SC ring, the conductance difference calculated by Eq. (10)
is shown as the red line in Fig. 3. Note that although the
conductance difference initially increases with small g0,
beyond some critical value g0 ≃ 0.5, the signal of 2Φ0

periodicity decreaseswith the conductance. This is because
the large tunnel transparency effectively renormalizes the
charging energy EC to a smaller value and thus suppresses
the parity anomaly-induced 2Φ0 periodicity. Practically, if a
decrease of 2Φ0 periodicity with increasing tunnel con-
ductance is observed experimentally, it would indicate a
topologically nontrivial Coulomb blockaded superconduc-
tor. In reality, the signal may arise from both AB effect and
parity anomaly, and the relative strength of the two is
unknown a priori. We note, however, that the AB con-
tribution can also be systematically suppressed by decreas-
ing the junction transparency in the ring, and the parity
anomaly contribution can be systematically increased by
lowering the temperature.

FIG. 3. Conductance difference Gð0Þ − GðΦ0Þ as a function
of the barrier transparency characterized by g0. For a short SC
ring (no matter topologically trivial or nontrivial) with no
charging energy, the conductance difference increases mono-
tonically with barrier transparency (blue line). By contrast, for a
TSC ring with charging energy, although increasing at low
barrier transparency, the conductance difference will eventually
decrease with barrier transparency when g0 goes beyond some
critical value ∼0.5 (red line).
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Discussion.—Our proposal relates the two-terminal
zero-bias conductance of the device in Fig. 1 to the
fundamental equilibrium parity anomaly of the bulk topo-
logical superconductor, independent of the presence of
Majorana modes or non-Abelian statistics. Accordingly,
accidental, near-zero-energy ABS cannot alter this topo-
logical property of the ring to produce a false positive
signature. In terms of feasibility, all the ingredients for this
proposal are separately in place in previous experiments:
(1) nanowire rings or “hashtags” demonstrating conven-
tional Aharonov-Bohm oscilliations in the absence of
superconductivity [56], (2) two-terminal proximity-SC
islands, where Coulomb blockade can be tuned via the
transparency of one of the barriers, and (3) robust Zeeman-
tuned parity switches in Coulomb blockaded class D
islands [57], indicating the absence of any substantial
density of subgap states. It remains now to combine these
ingredients. Although long parity lifetimes and protection
from nonequilibrium quasiparticles will eventually be
necessary for quantum information applications, they are
not requirements for the definitive transport measurement
of the parity anomaly we have discussed. Finally, from a
theorist’s perspective, we expect our generalization of the
AES model, incorporating the mean-field topological
invariant (sgn Pf HBdG) and thereby exploring its
beyond-mean-field consequences, could motivate related
generalizations for floating topological superconductors
and quantum dots in other symmetry classes.
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