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Metasurfaces allow tailored control of electromagnetic wave fronts. However, due to local conservation of
power flow, passive, lossless, and reflectionless metasurfaces have been limited to imparting phase
discontinuities—and not power density discontinuities—onto a wave front. Here, we show how the phase
and amplitude profiles of a wave front can be independently controlled using two closely spaced phase-
discontinuous metasurfaces. The two metasurfaces, each designed to exhibit spatially varying refractive
properties, are separated by a wavelength-scale distance and together form a compound metaoptic. A method
of designing the compound metaoptic is presented, which enables transformation between arbitrary complex-
valued field distributions without reflection, absorption, polarization loss, or active components. Such
compound metaoptics may find applications in the optical trapping of particles, displaying three-dimensional
holographic images, shrinking the size of optical systems, or producing custom (shaped and steered) far-field
radiation patterns.

DOI: 10.1103/PhysRevLett.122.113901

Metasurfaces are two-dimensional arrays of subwave-
length polarizable inclusions, which aggregately manipu-
late an electromagnetic wave [1–3]. These inclusions, or
unit cells, are arranged in single- or few-layer stacks that are
electrically or optically thin. In general, the electromagnetic
interactions of a metasurface can be approximated as
surface boundary conditions, simplifying analysis and
design. A distinct application of metasurfaces is their
ability to impart tailored phase discontinuities onto incident
wave fronts, demonstrating functionalities such as focus-
ing, refraction, and polarization control [4–7].
If a metasurface is restricted to be passive, lossless, and

reflectionless, the local power density of an incident wave
normal to the surface is maintained when transmitted
through the metasurface. We denote this local power
density normal to a surface as the local power flux.
Such metasurfaces exhibit high transmission efficiency
but only reshape the phase profile of an incident wave
front and not its local power flux profile [7–10]. As a result,
a single phase-only metasurface cannot independently
control the phase and amplitude distributions of
the transmitted field. Specifically, this can result in speckle
noise (random fluctuations in amplitude) in holographic
images formed with a phase-only surface [11,12].
Amplitude and phase control over an incident wave front
can suppress speckle, as shown by complex-valued holo-
grams [13–15]. However, such field control has not been
demonstrated using reflectionless metasurfaces free of
absorption and polarization losses.
Different methods of controlling the amplitude and

phase of electromagnetic fields using metamaterials have
been reported. In [16], a method for determining the
material parameters supporting independently defined

amplitude and phase field characteristics was introduced.
However, loss and gain parameters were necessary to
implement the desired field. In [17], a lossless, passive,
and reflectionless anisotropic metamaterial was used to
form a desired complex-valued field by manipulating the
phase and power flow within the medium. These
approaches, however, require a metamaterial medium,
which can be challenging to fabricate. Additionally,
leaky-wave structures [18–20] and partially reflecting
cavities [21–23] can create complex-valued aperture fields
but generate reflections that could interact with the source.
Phase and amplitude control has been demonstrated with

partially reflective or lossy metasurfaces. In [12,13,24–27],
the desired field profile is produced on the transmitted
cross-polarized field. In these cases, polarization loss is
used to form the desired phase and amplitude patterns. In
[28,29], the amplitude of the transmitted copolarized field
is controlled through absorption loss. Each of these
demonstrations applies a form of loss (reflection, absorp-
tion, or polarization) to implement the desired field.
Therefore, the total transmitted power is decreased in
exchange for amplitude control. In contrast to these earlier
works, we propose passive, lossless, and reflectionless
compound metaoptics for arbitrary wave front reshaping
in terms of both amplitude and phase for desired polar-
izations. Specifically, reflection, absorption, and polariza-
tion losses are avoided; and all available incident power is
used to form the desired field pattern [30].
A compound metaoptic is a collection of individual

metasurfaces arranged along an axis, which is analogous
to an optical compound lens. With additional degrees of
freedom, compound metaoptics can achieve electromag-
netic responses difficult or impossible to achieve with a
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single metasurface. We propose using reflectionless meta-
surfaces, illustrated in Fig. 1, to achieve both phase control
(beam steering) and amplitude control (beam shaping) in a
low-loss low-profile manner. This approach promises
higher diffraction efficiencies than conventional holograms
because both the amplitude and phase are controlled with
subwavelength pixelation.
The metasurfaces act as two phase planes: two reflec-

tionless, inhomogeneous surfaces that manipulate the phase
of the transmitted wave front. Together, the two phase
planes provide two degrees of freedom to control two wave
front attributes: the amplitude and phase profiles. In the
proposed arrangement, the first metasurface reshapes the
incident field power flux to form the desired power flux
profile at the second metasurface. The second metasurface
provides a phase correction to establish the desired ampli-
tude and phase profiles. The method is scalable from
microwave to visible wavelengths.
Related methods of forming desired complex-valued

optical fields have used reflective spatial light modulators
[31] or deformable mirrors [32]. The spatial light modu-
lators or mirrors are located at conjugate Fourier planes of a
two-lens optical system, limiting its compactness. Even
lensless systems are still large due to the use of reflective
components [33]. The custom phase-discontinuity profiles
implemented by the metasurfaces avoid the need for lenses
and reflective components. This provides a significantly
more low-profile solution to complex-valued field control,
and it allows the overall depth of the metaoptic to be on the
order of a wavelength.
The compound metaoptic requires reflectionless phase-

shifting metasurfaces. Huygens metasurfaces are excellent
candidates because they control the transmission phase and
eliminate reflections by maintaining a wave impedance
matched to the surrounding medium [8]. However, wide
angles of refraction may be required at the two phase planes,
resulting in different wave impedances on either side of each

metasurface. Reflections from this impedance mismatch can
be mitigated using bianisotropic surface parameters: electric,
magnetic, and magnetoelectric responses. Bianisotropic
Huygens metasurfaces implement a phase shift and serve
as impedance matching layers. This allows a reflectionless
transition between a wave incident at one angle and refracted
to another [9]. It should be noted that, where wide-angle
refraction is not required (e.g., when wave propagation is
predominately paraxial), simple Huygens metasurfaces
suffice.
The design of the compound metaoptic involves three

general steps. First, the field solution in region II (see
Fig. 1) is determined. This solution links the incident local
power flux profile Sinc to the desired local power flux
profile Sdes. The second step is to compute the electro-
magnetic parameters of each metasurface. Finally, the
metasurfaces can be implemented as asymmetric cascades
of electric impedance sheets [6,9].
A transverse electric (TE) polarization with respect to

the metasurface is assumed in this discussion (E ¼ Ezẑ,
H ¼ Hxx̂þHyŷ), but the method equally applies to the
transverse magnetic polarization. To simplify the discus-
sion, it is assumed the fields are invariant with respect to z
and each metasurface is inhomogeneous along the y
direction. Additionally, field interactions with the phase-
discontinuous boundaries are assumed to be reflectionless.
A time harmonic progression of eiωt is assumed.
The first step in forming the desired complex-valued

field is to determine the phase-shift profiles of each
metasurface. Phase-retrieval algorithms are commonly used
to determine the phase profile of a wave forming two field
amplitude patterns separated by a propagation distance.
One such method is the Gerchberg-Saxton algorithm
[34,35], which obtains the phase profiles by forward-
and reverse-propagating complex-valued field distributions
between the two planes. After each propagation step, the
field amplitude is replaced with the correct amplitude
profile, whereas the phase is retained. This action imposes
the amplitude profiles as partial constraints for iteratively
determining the complex-valued field at each plane. The
algorithm iterates until converging to a phase distribution,
which creates the two amplitude patterns.
However, directly applying a phase profile to a field

amplitude will generally alter the local power flux of
the complex-valued field. To ensure the conservation of
local power flux, the field amplitude profiles used in
the Gerchberg-Saxton algorithm must be modified to
exhibit the incident and desired local power flux distribu-
tions with each iteration. As a result, the partial constraint
conditions of the modified Gerchberg-Saxton algorithm
enforce the stipulated local power flux instead of the
electric field amplitude. This substitution of constraint
conditions is straightforward because the local power flux
and field amplitude are related quantities when the phase is
stipulated.

FIG. 1. Two metasurfaces form the compound metaoptic,
establishing three regions. The phase-discontinuous metasurfaces
reshape the amplitude and phase profiles of an incident beam, as
demonstrated by the wave front behavior. The inset plots display
the amplitude and phase profiles of the electric field before and
after each metasurface. Local power flux through each metasur-
face is conserved, eliminating reflections.
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The stipulated local power flux profile at each plane is
calculated from the known complex-valued electric fields
exterior to the metaoptic: either Einc for the first plane or
Edes for the second. The plane wave spectrum of the electric
field is calculated and divided by the TE wave impedance
for each plane wave component to determine the plane
wave spectrum of the tangential magnetic field Hy. The
spatialHy field is then calculated and used to determine the
stipulated local power flux at each boundary.
The original Gerchberg-Saxton algorithm is modified by

scaling the electric field amplitude such that the stipulated
local power flux profile is maintained. Before each propa-
gation step of the algorithm, the phase profile estimate is
applied to an assumed electric field amplitude (jEincj at
plane 1, or jEdesj at plane 2). The tangential magnetic field
is determined from the electric field using the previously
described method, allowing the local TE wave impedance η
for the wave to be calculated. If the local TE wave
impedance is assumed to remain unchanged after scaling
the electric field, the complex-valued electric field profile
with the stipulated power flux S and current iteration phase
estimate ϕ can be calculated as

E ¼ jηj ffiffiffiffiffiffi

2S
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Refηgp ejϕ: ð1Þ

This electric field is propagated to the other plane, where
the phase is retained and used to calculate another electric
field estimate with the stipulated local power flux.
The algorithm is iterated until the propagated fields at

each plane exhibit the stipulated local power flux profiles
(Sinc at plane 1 and Sdes at plane 2). The resulting phase
profiles of the field transmitted by metasurface 1, ϕt1, and
incident on metasurface 2, ϕi2, are used to calculate the
metasurface phase discontinuities as

ϕMS1 ¼ ϕt1 − ϕinc ð2Þ

ϕMS2 ¼ ϕdes − ϕi2: ð3Þ

Overall, the modified Gerchberg-Saxton algorithm takes
two complex-valued field profiles as inputs (Einc and Edes)
and produces the phase-discontinuity profiles of the two
metasurfaces as outputs. Additional details of the modified
phase-retrieval algorithm are provided in the Supplemental
Material [36].
Because this phase-retrieval algorithm neglects the

evanescent spectrum, complex field transformations are
possible that require only propagating spectral content in
region II. However, if a solution cannot be obtained at one
separation distance L, increasing L often reduces the
evanescent content required and improves the likelihood
of a solution. Taking advantage of the evanescent content to
form desired complex-valued fields over subwavelength
separations would require the excitation of surface waves in

addition to propagating waves in region II, and is a future
direction of study.
With the tangential field profiles fully determined on

both sides of each metasurface, the bianisotropic surface
parameters can be calculated. These parameters describe
the surface properties needed to transform the wave
impedance and phase of the field [6]. Because the field
solutions conserve local power flux through the boundaries,
these bianisotropic parameters model passive and lossless
Huygens surfaces. The surface parameters can be solved for
explicitly in terms of the tangential fields. A derivation is
described in the Supplemental Material [36], and is similar
to the approach in [37].
The field solution of the idealized metaoptic can be

observed by explicitly defining the desired electric and
magnetic surface current densities in place of the meta-
surfaces. Figure 1 displays such a simulation in the
commercial solver COMSOL MULTIPHYSICS for a metaoptic
that expands a normally incident Gaussian beam and
imposes a sinusoidal phase profile onto the desired field.
The bianisotropic Huygens metasurfaces comprising the

metaoptic can be implemented by a cascade of electric
impedance sheets [6,7,9,38]. Figure 2(a) shows a Huygens
metasurface unit cell, in which three electric impedance
sheets are separated by a subwavelength distance d. If
Zs1 ≠ Zs3, the unit cell exhibits bianisotropic properties.
Unit cells of this structure can support equivalent electric
and magnetic current densities and be tiled to produce a
gradient metasurface.
The metasurface unit cell of Fig. 2(a) is modeled as the

transmission-line circuit in Fig. 2(b), which contains three
shunt impedances (representing the impedance sheets)
separated by electrical lengths of βd. The three variable
parameters (shunt impedances) of the circuit model allow
control over three desired characteristics. We chose these to
be (1) an input impedance matched to the local incident TE
wave impedance (Zin ¼ ηi), (2) a load impedance matched
to the local transmitted TE wave impedance (ZL ¼ ηt), and

FIG. 2. The unit cell of a bianisotropic Huygens metasurface is
shown in (a), in which three sheet impedances Zs are separated by
a distance d. TE wave impedance on either side of the metasur-
face is denoted as ηi for the incident field and ηt for the
transmitted field. The unit cell is modeled by the transmission
line circuit shown in (b), in which transmission lines separate
three shunt impedances.
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(3) a desired phase delay through the surface. Matching the
impedances eliminates reflections, whereas the desired phase
delay implements the phase discontinuity. Because the
tangential fields are known adjacent to both metasurfaces,
unit cell parameters can be defined to locally satisfy these
distributions. The derivation for determining the impedance
sheet values as a function of the tangential field character-
istics is provided in the Supplemental Material [36].
Using this procedure, the compound metaoptic is

designed to transform an incident wave to a desired
complex-valued field distribution. We provide two simu-
lation examples in which an incident Gaussian beam (beam
radius of 5λ) is manipulated using a compound metaoptic.
Detailed descriptions of the design procedure for each
example are provided in the Supplemental Material [36].
In the first example, the incident Gaussian beam is

reshaped to produce a Dolph-Chebyshev far-field pattern
pointing toward 40 deg. This far-field pattern exhibits the
narrowest main beam for a given sidelobe level, given that
all sidelobes are at the same level [39]. Figure 3(a) shows
the amplitude distribution λ=3 from the aperture that
produces a far-field pattern having sidelobes of −15 dB.
The sheet impedance values of the metasurfaces were

calculated for a separation distance of L ¼ 1.25λ, a unit cell
width of λ=16, and an impedance sheet separation of
d ¼ λ=80. The sheet impedances were modeled as
ideal impedance boundaries in COMSOL MULTIPHYSICS.
Figure 3(a) shows that the simulated field amplitude just
beyond the metaoptic matches the desired field amplitude.
Figure 3(b) shows that the far-field pattern closely matches
the desired Dolph-Chebyshev pattern. Each of the sidelobes
is nearly −15 dB relative to the main lobe, and all pattern

nulls are located at the correct angles. Figure 3(c) shows the
simulated electric field, within and surrounding the meta-
optic. The first metasurface transforms the local power
flux profile across the separation distance L, and the
second metasurface points the main beam toward
40 deg. Figure 3(c) confirms that there are nearly no
reflections from the compound metaoptic.
In the second example, a compound metaoptic is

designed to radiate a field identical to the first-order field
scattered from three line scatterers. Essentially, the com-
pound metaoptic realizes a simple complex-valued holo-
gram of the scatterers. The virtual line scatterers are in the
region beyond the metaoptic [see Fig. 4(a)] and excited by a
plane wave traveling in the −x direction. The plane wave
spectrum of the field generated by each scatterer is summed
to obtain the total scattered plane wave spectrum along the
x ¼ 0 plane. A windowing function is applied to this
spectrum such that the scattered field is visible over a
viewing angle within �40 deg. The desired spatial electric
field distribution is obtained from the windowed plane
wave spectrum, and it is used to design the compound
metaoptic.
The metaoptic was designed with a separation distance

of L ¼ 2.25λ, a unit cell dimension of λ=16, and an
impedance sheet spacing of d ¼ λ=60. Figures 4(b) and
4(c) compare the simulated electric field amplitude and
phase, respectively, at a distance of 11.5λ from the
metaoptic with the interference pattern of the three line

FIG. 3. A compound metaoptic reshapes an incident Gaussian
beam to produce a Dolph-Chebyshev far-field pattern pointed
towards 40 deg. The metaoptic performance is shown in (a) as the
transmitted electric field amplitude λ=3 from the metaoptic, (b) as
the far-field radiation pattern, and (c) as the real part of the
simulated electric field.

FIG. 4. A compound metaoptic produces the field scattered by
three line scatterers arranged as shown in (a). The simulated
electric field is compared to the line scatterer interference pattern
at a distance of 11.5λ from the metaoptic in (b) as the field
amplitude and (c) as the phase. The far-field radiation pattern is
shown in (d) for the simulated field distribution and the scatterer
interference pattern.
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scatterers. We see that the electric field produced by the
metaoptic closely matches, in amplitude and phase, the
ideal interference pattern of the three line scatterers over a
field of view of �40 deg. This is achieved even at short
distances from the metaoptic. Figure 4(d) shows that the
far-field pattern also closely matches the true interference
pattern over the desired azimuthal range. This demonstrates
that the compound metaoptic is capable of reconstructing
the field scattered from known objects in both amplitude
and phase.
The proposed compound metaoptic uses two local power

flux conserving phase-discontinuous metasurfaces to mold
the available power from a source into a desired complex-
valued field profile. The bianisotropic properties of these
constitutive Huygens metasurfaces also allow the metaoptic
to have a wavelength-scale thickness.
Compound metaoptics may find applications in three-

dimensional holographic display technology. This
approach also presents a new design paradigm for elec-
tronically scanned antennas. Conventional approaches at
microwave or millimeter-wave frequencies utilize phased
arrays in which phase shifters provide beam steering and
amplifiers or attenuators provide beam shaping. Such a
method becomes increasingly difficult to implement at
shorter wavelengths due to transistor cutoff frequencies and
array feeding network losses. The proposed approach is
especially attractive at millimeter-wave frequencies and
beyond, given that it allows beam shaping (amplitude
control) and beam steering (phase control) simply by using
two phase planes.
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