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We present a twistorlike formula for the complete tree-level S matrix of six-dimensional (6D) (2,0)
supergravity coupled to 21 Abelian tensor multiplets. This is the low-energy effective theory that
corresponds to type IIB superstring theory compactified on a K3 surface. The formula is expressed as an
integral over the moduli space of certain rational maps of the punctured Riemann sphere. By studying soft
limits of the formula, we are able to explore the local moduli space of this theory, f½SOð5; 21Þ�=
½SOð5Þ × SOð21Þ�g. Finally, by dimensional reduction, we also obtain a new formula for the tree-level
S matrix of 4D N ¼ 4 Einstein-Maxwell theory.
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Introduction.—To describe scattering amplitudes of
supersymmetric theories in higher dimensions, Refs. [1,2]
introduced a six-dimensional rational map formalism in the
spirit of Refs. [3–5]. Using this formalism, extremely
compact formulas were found for tree-level amplitudes of
a wide range of interesting theories, including maximally
supersymmetric gauge theories and supergravity in diverse
dimensions, as well as the world-volume theories of probe
D-branes and the M5-brane in flat space. In the case of the
M5-brane [1], which contains a chiral tensor field, the
formalism circumvents a common difficulty in formulating
a covariant action principle due to the self-duality constraint.
In this Letter, we continue to explore the utility of the

six-dimensional (6D) rational maps and spinor-helicity
formalism and present the tree-level S matrix for the theory
of 6D (2,0) supergravity. This chiral theory arises as the
low-energy limit of type IIB string theory compactified on a
K3 surface [6] and is particularly interesting because it
describes the interaction of self-dual tensors and gravitons.
To describe massless scattering in 6D, it is convenient to

introduce spinor-helicity variables [7],

pAB
i ¼ λAi;aλ

B
i;bϵ

ab ≔ hλAi λBi i: ð1Þ

Here and throughout, i ¼ 1;…; n labels the n particles,
A ¼ 1, 2, 3, 4 is a spinor index of the Spin ð5; 1Þ Lorentz
group, and a ¼ 1, 2 is a left-handed index of the SUð2ÞL ×
SUð2ÞR massless little group. This is the only nontrivial

little-group information that enters for chiral (2,0) super-
symmetry—the (2,0) supergravity multiplet and a number
of (2,0) tensor multiplets, which contain a chiral tensor. The
tensor multiplets transform as singlets of SUð2ÞR, whereas
the gravity multiplet is a triplet; later we will introduce the
doublet index â for SUð2ÞR.
We also introduce a flavor index fi with i ¼ 1;…; 21 to

label the 21 tensor multiplets; this is the number that arises
in 6D from compactification of the NS and R fields of type
IIB superstring theory on a K3 surface. It is also the unique
number for which the gravitational anomalies cancel [8].
We assume that we are at generic points of the moduli
space, where perturbative amplitudes are well defined [9].
Interestingly one can explore the moduli space of the theory
from the S matrix by studying soft limits [10]. Indeed, we
derive new soft theorems from the formula we construct
which describe precisely the moduli space of 6D (2,0)
supergravity: f½SOð5; 21Þ�=½SOð5Þ × SOð21Þ�g.
In the rational-map formulation, amplitudes for n par-

ticles are expressed as integrals over the moduli space of
rational maps from the n-punctured Riemann sphere to the
space of spinor-helicity variables. In general, the ampli-
tudes take the following form [1,2,11]:

A6D
n ¼

Z
dμ6Dn ILIR; ð2Þ

where dμ6Dn is the measure encoding the 6D kinematics and
the product ILIR is the integrand that contains the
dynamical information of the theories, including super-
symmetry. The measure is given by

dμ6Dn ¼
Q

n
i¼1 dσi

Q
m
k¼0 d

8ρk
vol½SLð2;CÞσ × SLð2;CÞρ�

1

V2
n

Yn
i¼1

E6D
i ; ð3Þ
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and n ¼ 2mþ 2 (we will discuss n ¼ 2mþ 1 later). The
coordinates σi label the n punctures, and Vn ¼

Q
i<jσij,

with σij ¼ σi − σj. They are determined up to an overall
SLð2;CÞσ Möbius group transformation, whose “volume”
is divided out in a standard way. The 6D scattering
equations are given by

E6D
i ¼ δ6

�
pAB
i −

hρAðσiÞρBðσiÞiQ
j≠iσij

�
: ð4Þ

These maps are given by degree-m polynomials ρAaðσÞ ¼P
m
k¼0 ρ

A
a;kσ

k, which are determined up to an overall
SLð2;CÞρ transformation, whose volume is divided out.
This group is a complexification of SUð2ÞL.
It is straightforward to see that Eq. (4) implies the on-

shell conditions p2
i ¼ 0 and momentum conservation.

Furthermore, as shown in Refs. [1,2], this construction
implies that the integrals are completely localized on the
ðn − 3Þ! solutions, which are equivalent to those of the
general-dimensional scattering equations [11],X

i≠j

pi · pj

σij
¼ 0 for all j: ð5Þ

We will see shortly that, unlike the general-dimensional
scattering equations, the use of the spinor-helicity coor-
dinates and 6D scattering equations allows us to make
supersymmetry manifest.
Now consider n ¼ 2mþ 1, for which we have [2]

dμ6Dn ¼ ðQn
i¼1 dσi

Q
m−1
k¼0 d

8ρkÞd4ωhξdξi
vol½SLð2;CÞσ; SLð2;CÞρ; T�

1

V2
n

Yn
i¼1

E6D
i : ð6Þ

The polynomials ρAaðσÞ now are given by

ρAaðσÞ ¼
Xm−1

k¼0

ρAa;kσ
k þ ωAξaσ

m; ð7Þ

and there is a shift symmetry TðαÞ acting on ωA:
ωA → ωA þ αhξρAm−1i, which we also have to mod out.
Here we review the integrand factors for 6D (2,2)

supergravity since they will be relevant. For (2,2) super-
gravity, we have

IL ¼ det0Sn; IR ¼ Ωð2;2Þ
F ; ð8Þ

where Sn is an n × n antisymmetric matrix with entries
½Sn�ij ¼ ðpi · pj=σijÞ. This matrix has rank (n − 2), and the
reduced Pfaffian and determinant are defined as

Pf 0Sn ¼
ð−1Þiþj

σij
PfSijij; det0Sn ¼ ðPf 0SnÞ2: ð9Þ

Here Sijij means that the ith and jth rows and columns of Sn
are removed, and the result is i, j independent [12].Ωð2;2Þ

F is

a fermionic function of Grassmann coordinates ηIai , η̃Î âi ,
which we use to package the supermultiplet of on-shell
states into a “superfield,”

Φð2;2Þðη; η̃Þ ¼ ϕ0 þ � � � þ ηIaηI;bBab þ η̃Î;âη̃b̂
Î
Bâ b̂ þ � � �

þ ηIaηI;bη̃
Î
âη̃Î;b̂G

abâ b̂ þ � � � þ ðηÞ4ðη̃Þ4ϕ̄0;

ð10Þ
where Bab and Bâ b̂ are self-dual and anti-self-dual two-

forms, and Gabâ b̂ is the graviton. Here I, Î ¼ 1, 2 are the
R-symmetry indices corresponding to an SUð2Þ × SUð2Þ
subgroup of the full USpð4Þ ×USpð4Þ R symmetry. The

fermionic function Ωð2;2Þ
F imposes the conservation of

supercharge, which may be viewed as a double copy,

Ωð2;2Þ
F ¼ Ωð2;0Þ

F Ωð0;2Þ
F , and Ωð2;0Þ

F is given by

Ωð2;0Þ
F ¼ Vn

Ym
k¼0

δ4
�Xn

i¼1

Ca;k;i;bη
Ib
i

�
: ð11Þ

The n × 2n matrices Ca;k;i;b ¼ ðWiÞbaσki and ðWiÞba can be
expressed in terms of ρAaðσiÞ via

pAB
i Wa

i;b ¼
ρ½A;aðσiÞλB�i;bQ

j≠iσij
; ð12Þ

which is independent of A, B, and satisfies detWi ¼Q
j≠iσ

−1
ij . The matrix Ca;k;i;b is a symplectic Grassmannian

which was used in Ref. [2] as an alternative way to impose

the 6D scattering equations.Ωð0;2Þ
F is the conjugate ofΩð2;0Þ

F ,
and the definition is identical, with the understanding that
we use the right-handed variables, such as η̃Îâ, λ̃Â â, ρ̃Â â, ξ̃â,

ðW̃iÞb̂â, etc.
For n ¼ 2mþ 1, the integrands take a slightly different

form. For the fermionic part, we have

Ωð2;0Þ
F ¼ Vn

Ym−1

k¼0

δ4
�Xn

i¼1

Ca;k;i;bη
Ib
i

�

× δ2
�Xn

i¼1

ξaCa;m;i;bη
Ib
i

�
; ð13Þ

whereas the n × n matrix Sn is modified to an ðnþ 1Þ ×
ðnþ 1Þ matrix, which we denote Ŝn. Ŝn is defined in the
same way as Sn, but with i, j ¼ 1;…; n, ⋆. Here σ⋆ is a
reference puncture, and p⋆ is given by

pAB⋆ ¼ 2q½ApB�Cðσ⋆Þq̃C
qD½ρ̃Dðσ⋆Þξ̃�hρEðσ⋆Þξiq̃E

; ð14Þ

where q and q̃ are arbitrary spinors.
6D (2,0) supergravity.—The 6D (2,0) supergravity

theory contains 21 tensor multiplets and the graviton

PHYSICAL REVIEW LETTERS 122, 111604 (2019)

111604-2



multiplet. The superfield of the tensor multiplet is a singlet
of the little group,

ΦðηÞ ¼ ϕþ � � � þ ηIaηI;bBab þ � � � þ ðηÞ4ϕ̄; ð15Þ

where a, b ¼ 1, 2 are the SUð2ÞL little-group indices. The
graviton multiplet transforms as a (1; 3) of the little group,
so the superfield carries explicit SUð2ÞR indices,

Φâ b̂ðηÞ ¼ Bâ b̂ þ � � � þ ηIaηI;bGab
â b̂

þ � � � þ ðηÞ4B̄â b̂; ð16Þ

and Φâ b̂ðηÞ ¼ Φb̂ âðηÞ. We see that both the tensor multi-
plet and the graviton multiplet can be obtained from the 6D
(2,2) superfield in Eq. (10) via supersymmetry (SUSY)
reductions [13,14],

ΦðηÞ ¼
Z

dη̃Îâdη̃
â
Î
Φð2;2Þðη; η̃Þjη̃→0;

Φâ b̂ðηÞ ¼
Z

dη̃Îâdη̃Î b̂Φð2;2Þðη; η̃Þjη̃→0: ð17Þ

These integrals have the effect of projecting onto the
right-handed USpð4Þ R-symmetry singlet sector, which
reduces ð2; 2Þ → ð2; 0Þ. Using the reduction, the ampli-
tudes of (2,0) supergravity with n1 supergravity multiplets
and n2 tensor multiplets of the same flavor (n1 þ n2 ¼ n)
can be obtained from the (2,2) supergravity amplitude via

Að2;0Þ
n1;n2 ¼

Z Y
i∈n1

dη̃Îi;âidη̃i;Îb̂i
Y
j∈n2

dη̃Ĵj;âjdη̃
âj
j;Ĵ
Að2;2Þ
n ðη; η̃Þ:

Note that Að2;2Þ
n ðη; η̃Þ ∼ η2nη̃2n, so the integration removes

all η̃’s. The fermionic integration can be performed using
Eqs. (8) and (11) [or Eq. (13) for odd n], and we obtain

Að2;0Þ
n1;n2 ¼

Z
dμ6Dn M̃n1n2

â b̂
Vn det0 SnΩ

ð2;0Þ
F ; ð18Þ

where M̃n1n2
â b̂

, which we will define shortly, is obtained by

integrating out Ωð0;2Þ
F .

We begin with n even, as the odd-n case works in a
similar fashion. Introducing the n × n matrix

M̃â1���ân ¼

0
BBBBBBBBBBBB@

C̃1̂;0;1;â1
C̃1̂;0;2;â2

� � � C̃1̂;0;n;ân

..

. ..
. � � � ..

.

C̃1̂;m;1;â1
C̃1̂;m;2;â2

� � � C̃1̂;m;n;ân

C̃2̂;0;1;â1
C̃2̂;0;2;â2

� � � C̃2̂;0;n;ân

..

. ..
. � � � ..

.

C̃2̂;m;1;â1
C̃2̂;m;2;â2

� � � C̃2̂;m;n;ân

1
CCCCCCCCCCCCA
; ð19Þ

M̃n1n2
â b̂

is then given by

M̃n1n2
â b̂

¼ det M̃â1���ân det M̃b̂1���b̂n : ð20Þ

Note that here â and b̂ denote sets of indices. The indices
âi, b̂i are contracted if i ∈ n2, whereas for j ∈ n1 we
symmetrize âj, b̂j. This corresponds to constructing little-
group singlets for tensor multiplets and triplets for graviton
multiplets. After the contraction and symmetrization, the
result of (20) simplifies drastically [15],

M̃n1n2
â b̂

→
PfXn2

Vn2

M̃n10
â b̂

; ð21Þ

where Xn2 is an n2 × n2 antisymmetric matrix given by

½Xn2 �ij ¼
� 1

σij
if i ≠ j;

0 if i ¼ j;
ð22Þ

and M̃n10
â b̂

contains only the graviton multiplets. Let us
remark that the simplification (21) (especially the appear-
ance of PfXn2) will be crucial for the generalization to
amplitudes with multiple tensor flavors which is more
interesting and relevant for type IIB on K3.
At this point in the analysis, we have obtained the tree-

level amplitudes of 6D (2,0) supergravity with a single
flavor of tensor multiplets:

Að2;0Þ
n1;n2 ¼

Z
dμ6Dn

PfXn2

Vn2

M̃n10
â b̂

Vndet0SnΩ
ð2;0Þ
F : ð23Þ

The factor PfXn2 requires the nonvanishing amplitudes to
contain an even number n2 of tensor multiplets, as
expected. For odd n, the matrix M̃â1���ân is given by

M̃â1���ân ¼

0
BBBBBBBBBBBBBBB@

ξ̃b̂C̃b̂;m;1;â1
ξ̃b̂C̃b̂;m;2;â2

� � � ξ̃b̂C̃b̂;m;n;ân

C̃1̂;0;1;â1
C̃1̂;0;2;â2

� � � C̃1̂;0;n;ân

..

. ..
. � � � ..

.

C̃1̂;m−1;1;â1 C̃1̂;m−1;2;â2 � � � C̃1̂;m−1;n;ân

C̃2̂;0;1;â1
C̃2̂;0;2;â2

� � � C̃2̂;0;n;ân

..

. ..
. � � � ..

.

C̃2̂;m−1;1;â1 C̃2̂;m−1;2;â2 � � � C̃2̂;m−1;n;ân

1
CCCCCCCCCCCCCCCA

;

recall that ξ̃b̂ is the right-hand version of ξb in Eq. (7). Then
the amplitudes take the same form,

Að2;0Þ
n1;n2 ¼

Z
dμ6Dn

PfXn2

Vn2

M̃n10
â b̂

Vn det0 ŜnΩ
ð2;0Þ
F : ð24Þ

Multiflavor tensor multiplets: As we have emphasized,
identity (21) is crucial for the generalization to multiple
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tensor flavors, which is required for the 6D (2,0) super-
gravity. Indeed, the formula takes a form similar to that of
an Einstein-Maxwell theory worked out by Cachazo et al.
[12], especially the object PfXn2 . In that case, in passing
from single-Uð1Þ photons to multiple-Uð1Þ ones, one
simply replaced the matrix Xn with Xn [12],

½Xn�ij ¼
( δfifj

σij
if i ≠ j;

0 if i ¼ j;
ð25Þ

which allows the introduction of multiple distinct flavors:
namely, fi, fj are flavor indices, and δfifj ¼ 1 if particles i,
j are of the same flavor; otherwise δfifj ¼ 0. Inspired by
this result, we are led to a proposal for the complete tree-
level S matrix of 6D (2,0) supergravity with multiple
flavors of tensor multiplets:

Að2;0Þ
n1;n2 ¼

Z
dμ6Dn

PfXn2

Vn2

M̃n10
â b̂

Vndet0SnΩ
ð2;0Þ
F : ð26Þ

Again, the 6D scattering equations and integrands take
different forms depending on whether n is even or odd [16].
Since n2 is necessarily even, this is equivalent to distin-
guishing whether n1 is even or odd.
Equation (26) is our main result, which is a localized

integral formula that describes all tree-level superampli-
tudes of Abelian tensor multiplets (with multiple flavors)
coupled to gravity multiplets. We can verify that it has all of
the correct properties. For instance, due to the fact that all of
the building blocks of the formula come from either 6D
(2,2) supergravity or Einstein-Maxwell theory, they all
behave properly in the factorization limits and transform
correctly under the symmetries: SLð2;CÞσ, SLð2;CÞρ, etc.
Also, as we will show later, when reduced to 4D, the
proposed formula produces (supersymmetric) Einstein-
Maxwell amplitudes, which is another consistency check.
Finally, it is straightforward to check that the formula gives
correct low-point amplitudes, e.g., [17],

Að2;0Þ
0;4 ¼ δ8ðQÞ

�
δf1f2δf3f4

s12
þ δf1f3δf2f4

s13
þ δf2f3δf1f4

s23

�
;

Að2;0Þ
2;2 ¼ δf1f2

δ8ðQÞ½1â12â23â34â4 �½1â12â23b̂34b̂4 �
s12s23s31

þ sym:

We symmetrize â3; b̂3 and â4; b̂4 for the graviton multip-
lets, ½1â12â23â34â4 � ¼ ϵABCDλ̃

A
1â1 λ̃

B
2â2 λ̃

C
3â3 λ̃

D
4â4 , and δ8ðQÞ ¼

δ8ðP4
i¼1 λ

A
i;aη

Ia
i Þ.

The K3 moduli space from soft limits.—Type IIB string
theory compactified on K3 has a well studied moduli space
described by the coset [18],

Mð2;0Þ ¼ SOð5; 21;ZÞnSOð5; 21Þ=½SOð5Þ × SOð21Þ�:
ð27Þ

The discrete group is invisible in the supergravity appro-
ximation, so we concern ourselves with the local form
of the moduli space of supergravity theory—namely,
f½SOð5; 21Þ�=½SOð5Þ × SOð21Þ�g. It has a dimension of
105, which corresponds precisely to the 105 scalars in the
21 tensor multiplets. These scalars are Goldstone bosons of
the breaking of SOð5; 21Þ to SOð5Þ × SOð21Þ, which are
the R symmetry and the flavor symmetry, respectively.
Therefore, the scalars obey soft theorems, which are the
tools to explore the structure of the moduli space directly
from the S matrix [10].
We find that the amplitudes behave like pion amplitudes

with “Adler’s zero” [19] in the single-soft limit. Indeed, for
p1 → 0, we find that

Anðϕf1
1 ; 2;…; nÞ → Oðp1Þ; ð28Þ

and the same for other scalars in the tensor multiplets.
The commutator algebra of the coset space may be
explored by considering double-soft limits for scalars.
Beginning with the flavor symmetry, we find for p1,
p2 → 0 simultaneously

Anðϕf1
1 ; ϕ̄f2

2 ;…Þ → 1

2

Xn
i¼3

pi · ðp1 − p2Þ
pi · ðp1 þ p2Þ

Rf1f2
i An−2; ð29Þ

where the fi’s are flavor indices and Rf1f2
i is a generator of

the unbroken SOð21Þ, which may be viewed as the result of
the commutator of two broken generators. Rf1f2

i acts on
superfields as

Rf1f2
i Φf2

i ¼ Φf1
i ; Rf1f2

i Φf1
i ¼ −Φf2

i ;

Rf1f2
i Φf3

i ¼ 0; Rf1f2
i Φi;â b̂ ¼ 0; ð30Þ

where f3 ≠ f1, f2. Therefore, the generator exchanges
tensor multiplets of flavor f1 with ones of f2 and sends all
others and the graviton multiplet to 0.
To study the SOð5Þ R-symmetry generators, we take soft

limits of two scalars which do not form an R-symmetry
singlet. For instance,

Anðϕ̄1;ϕIJ
2 ;…Þ → 1

2

Xn
i¼3

pi · ðp1 − p2Þ
pi · ðp1 þ p2Þ

RIJ
i An−2; ð31Þ

with RIJ
i ¼ ηIi;aη

J;a
i . Similarly, other choices of soft scalars

lead to the remaining R-symmetry generators:

Ri;IJ ¼
∂

∂ηIi;a
∂

∂ηJ;ai

; RI
i;J ¼ ηIi;a

∂
∂ηJi;a : ð32Þ

Finally, we consider the cases in which soft scalars carry
different flavors and do not form an R-symmetry singlet.
This actually leads to new soft theorems,
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Anðϕ̄f1
1 ;ϕf2;IJ

2 ;…Þ →
Xn
i¼3

p1 · p2

pi · ðp1 þ p2Þ
Rf1f2
i RIJ

i An−2;

ð33Þ

and one may proceed similarly for other R-symmetry
generators. The results of the soft limits now contain both
flavor and R-symmetry generators, reflecting the direct pro-
duct structure in f½SOð5; 21Þ�=½SOð5Þ × SOð21Þ�g. This is
a new phenomenon that is not present in pure (2,0)
supergravity [10,20].
The above soft theorems may be obtained by analyzing

how the integrand and the scattering equations behave in
the limits. For instance, the vanishing of the amplitudes in
the single-soft limits is due to

Z
dμ6Dn ∼Oðp−1

1 Þ; det0Sn ∼Oðp2
1Þ; ð34Þ

and the rest remains finite. The double-soft theorems
require more careful analysis along the lines of, e.g.,
Ref. [21]. The structures of double-soft theorems, however,
are already indicated by knowing the four-point ampli-
tudes, since important contributions are diagrams with a
four-point amplitude on one side such that the propagator
becomes singular in the limit [22]. Finally, we have also
checked the soft theorems explicitly using formula (26) for
various examples.
4D N ¼ 4 Einstein-Maxwell theory.—One can dimen-

sionally reduce 6D (2,0) supergravity to obtain 4D N ¼ 4
Einstein-Maxwell theory. The tree-level amplitudes of this
theory capture the leading low-energy behavior of type IIB
(or type IIA) superstring theory on K3 × T2.
The reduction to 4D can be obtained by decomposing the

6D spinor as A → α ¼ 1, 2, _α ¼ 3, 4. The compact

momenta are Pαβ
i ¼ P _α _β

i ¼ 0; this is implemented by
λAa → λαþ ¼ 0 and λ _α− ¼ 0.
The 6D tensor superfield becomes an N ¼ 4 vector

multiplet in 4D, in a nonchiral form [1,23],

ΦðηaÞ → VN¼4ðηþ; η−Þ ¼ ϕþ ηÎ−ψ
−
Î
þ � � �

þ ðηþÞ2Aþ þ ðη−Þ2A− þ � � � þ ðηþÞ2ðη−Þ2ϕ̄:
ð35Þ

Dimensional reduction of Φâ b̂ðηÞ is analogous. It separates
into three cases, where Φþ̂ −̂ → VN¼4ðηþ; η−Þ, and
Φþ̂ þ̂;Φ−̂ −̂ become a pair of positive- and negative-helicity
graviton multiplets

Φþ̂ þ̂ðηaÞ → Gþ
N¼4

ðηþ; η−Þ ¼ Aþ þ ηÎ−ψ
−þ
Î

þ � � �
þ ðηþÞ2Gþþ þ ðη−Þ2ϕþ � � � þ ðηþÞ2ðη−Þ2Āþ;

ð36Þ

Φ−̂ −̂ðηaÞ → G−
N¼4

ðηþ; η−Þ ¼ Ā− þ ηÎ−Ψ−−
Î

þ � � �
þ ðη−Þ2G−− þ ðηþÞ2ϕ̄þ � � � þ ðηþÞ2ðη−Þ2A−:

ð37Þ

We see that the on-shell spectrum of the 4D supergravity
theory consists of the Gþ and G− superfields coupled to 22
N ¼ 4 Maxwell multiplets.
We are now ready to perform the dimensional reduction

on Eq. (26) [24]. First, the 6D measure reduces to

dμ4D ¼
Q

n
i¼1 dσi

Q
d
k¼0 d

2ρk
Q

d̃
k¼0 d

2ρ̃k
volðSLð2;CÞσ ×GLð1;CÞÞ

1

RðρÞRðρ̃Þ
Yn
i¼1

E4D
i ;

where RðρÞ, Rðρ̃Þ are the resultants of the polynomials

ραðσÞ ¼
Xd
k¼0

ραkσ
k; ρ̃ _αðσÞ ¼

Xd̃
k¼0

ρ̃ _α
kσ

k; ð38Þ

with dþ d̃ ¼ n − 2, and the 4D scattering equations are
given by

E4D
i ¼ δ4

�
pα _α
i −

ραðσiÞρ̃ _αðσiÞQ
j≠iσij

�
: ð39Þ

The 2 × 2 matrix ðW̃iÞab reduces to

ðW̃iÞþ̂ þ̂ ¼ ðW̃iÞ−̂ −̂ ¼ 0; ðW̃iÞþ̂ −̂ ¼ ti; ðW̃iÞ−̂ þ̂ ¼ t̃i;

ð40Þ

with ti ¼ ½λαi =ραðσiÞ�, t̃i ¼ ½λ̃ _αi =ρ̃ _αðσiÞ� (independent of α,
_α), and tit̃i ¼

Q
j≠ið1=σijÞ. As for the integrand, the parts

that reduce to 4D nontrivially are

M̃n1
â b̂

→ T̃n1
â b̂
; det0Sn → R2ðρÞR2ðρ̃ÞV−2

n : ð41Þ

Assuming that we have m1 Gþ superparticles and m2 G−,
with m1 þm2 ¼ n1 [25], we find that T̃n1 is given by

T̃n1 ¼ Tm1þ Tm2− ¼
�
V2
m1

Y
i∈m1

t2i

��
V2
m2

Y
j∈m2

t̃2j

�
; ð42Þ

where Vm1
¼ Q

i<jσij for i, j ∈ m1, and we proceed
similarly for Vm2

. We therefore obtain a general formula
for the amplitudes of 4D N ¼ 4 Einstein-Maxwell theory:

AN¼4
n ¼

Z
dμ4D

PfXn2

Vn2Vn
Tm1þ Tm2− R2ðρÞR2ðρ̃ÞΩN¼4

F ; ð43Þ

where ΩN¼4
F implements the 4D N ¼ 4 supersymmetry,

arising as the reduction of Ωð2;0Þ
F ,
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ΩN¼4
F ¼

Yd
k¼0

δ2
�Xn

i¼1

tiσki η
I
iþ

�Yd̃
k¼0

δ2
�Xn

i¼1

t̃iσki η
Î
i−

�
: ð44Þ

The formula should be understood as summing over d; d̃
obeying dþ d̃ ¼ n − 2. However, it is clear from the
superfields that we should require

d ¼ n2
2
þm1 − 1; d̃ ¼ n2

2
þm2 − 1; ð45Þ

recall that n2 is even. Therefore, for a given number of
photon and graviton multiplets, the summation over sectors
becomes a sum over different m1, m2. We have checked
(43) against many explicit amplitudes and have also veri-
fied that the integrand is identical to that of Ref. [12] for
certain component amplitudes.
Discussion and conclusion.—In this Letter, we presented

a formula for the tree-level S matrix of 6D (2,0) super-
gravity. The formula for single-flavor tensor multiplets was
constructed via a SUSY reduction of the one for (2,2)
supergravity. We observed important simplifications in
deriving the formula, particularly the appearance of the
object PfXn, crucially for the generalization to 21 flavors
required for (2,0) supergravity. By studying the soft limits
of the formula, we were able to explore the moduli space of
the theory. Via dimensional reduction, we also deduced a
new formula for amplitudes of 4D N ¼ 4 Einstein-
Maxwell theory. Since 6D (2,0) supergravity has a UV
completion as a string theory, it would be of interest to
extend our formula to include α0 corrections, perhaps along
the lines of Ref. [26]. Also, a recent paper [27] introduces
an alternative form of the scattering equations that treats
even and odd points equally but uses a different formalism
for supersymmetry. It will be interesting to study our
formula in this formalism.
Our results provide an S matrix confirmation of various

properties of (2,0) supergravity and the dimensionally
reduced theory as predicted by string dualities. While
the 10D theory has a dilaton that sets the coupling, in
6D this scalar is one of the 105 moduli fields and appears
equally with the other 104 scalars. If one considers the
compactification on K3 × T2, standard U dualities imply
equivalence to the type IIA superstring theory on the same
geometry or the heterotic string theory compactified to 4D
on a torus. The formulas discussed in this Letter apply to all
of these cases, at least at generic points of the moduli space.
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