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We address the nature of phase transitions in periodically driven systems coupled to a bath. The latter
enables a synchronized nonequilibrium Floquet steady state at finite entropy, which we analyze for rapid
drives within a nonequilibrium renormalization group (RG) approach. While the infinitely rapidly driven
limit exhibits a second-order phase transition, here we reveal that fluctuations turn the transition first order
when the driving frequency is finite. This can be traced back to a universal mechanism, which crucially
hinges on the competition of degenerate, near critical modes associated with higher Floquet Brillouin
zones. The critical exponents of the infinitely rapidly driven system—including a new, independent one—
can yet be probed experimentally upon smoothly tuning towards that limit.
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Introduction.—Many-body Floquet systems [1,2]—
ensembles of particles subject to periodic driving—have
recently triggered enormous research interest, both exper-
imentally and theoretically. For example, very rapid drive
can lead to effective conservative dynamics on short
enough timescales, as was successfully exploited for
Hamiltonian engineering of artificial gauge fields for
ultracold atoms [3,4]. When instead the driving frequency
Ω is closer to the natural energy scales of the problem,
phenomena directly tied to driving can be observed, such as
time crystals in atomic [5] and ionic [6] systems.
Theoretical research spans the question of equilibration
[7–20], the search for novel topological states without
equilibrium counterparts [21–25], or driven analogs of
many-body localization [26–28].
Specifically when it comes to implementations of

periodically driven quantum systems with generic inter-
actions, the ensuing irreversibility can lead to unbounded
heating [7,8,10–12,14–16,18,20,29–32]. This represents an
important hurdle to experimental implementation of many
of the anticipated phenomena. A natural cure is to couple
the driven system to a bath, such that the system can reach a
Floquet steady state, with observables synchronized to the
drive. Often such baths occur quite naturally, such as
phonons in solid state superfluids [33–37], quantum dots
and optical cavities [38–42], Brownian motors [43–45],
spin chains [46–48], or cold atoms in optical lattices
[49–51].
A natural and fundamental question in this large class of

periodically driven, open quantum systems concerns the
effect of the periodic drive on symmetry breaking phase
transitions [52]. Previous work has addressed this question
in the slowly driven limit, establishing the connection to
Kibble-Zurek physics [53,54], as well as intermediate
driving frequencies [48,55–57]. The effect of fast, but
not infinitely fast driving remained elusive so far.

In this work, we focus on a minimal model for a rapidly
periodically driven open quantum system with phase
rotation symmetry in three dimensions (3D). We identify
a universal mechanism, according to which a seeming
second-order phase transition is unavoidably driven first
order by fluctuations.
Basic physical picture.—At first sight, the qualitative

modification of the critical behavior by a fast scale may
appear counterintuitive. It can be rationalized, however,
when taking into account the fact that energy is not
conserved in open Floquet systems. For any mode with
a given frequency, there is a tower of modes with the same
frequency but shifted by integer multiples of Ω. This
represents the possibility of exchanging energy quanta

FIG. 1. Schematic phase diagram of the open Floquet system in
3D. δt is the distance from the phase transition in the infinitely
rapidly driven system, x̂ ∼ Ω−1 is the rescaled drive coefficient
[cf. Eq. (7)]. The symmetry breaking phase transition occurs at
the solid black line. It is second order only at Ω−1 ¼ 0 (red dot).
Otherwise, fluctuations associated with the periodic drive trans-
form the phase transition to weakly first order. The dashed red
lines represent a crossover region between the known Ω−1 ¼ 0
scaling regime and one where scaling is frozen out (light red).
The black dotted line represents a typical experimental path
through the phase diagram.
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nΩ with the driving field—a notion of “high” and “low”
energies, or “slow” and “fast” modes, is thus not well
defined a priori.
Let us first consider the undriven situation for a general

open system. The proper object to characterize criticality is
the retarded single-particle Green function, Eq. (5). In the
frequency and momentum domain it takes the form

GR;0ðω; qÞ ¼
1

ω − ϵq − iγq
;

where we have absorbed the quasiparticle residue in the
definition of the energy ϵq and damping rate γq. In general,
both ϵq, but also γq are momentum dependent, continu-
ous functions. Within our model, they are given by
ϵq þ iγq ¼ −Kq2 − μ0. The poles of GR;0 depend on q
and thus lie on a line in the complex frequency plane
(central solid red line in Fig. 2). The imaginary part of the
end point of the line (red dot) represents the system gap—it
provides the decay rate for the slowest mode of the system.
Tuning to criticality is then achieved by making this gap
vanish, which happens when the line of poles touches the
real axis. A renormalization procedure is then needed to
control the singularities induced by the vanishing of the
gap, but is well defined in the undriven open system case:
It can be designed to gradually integrate out modes with
decreasing q along the lines of poles (red overshad-
owed range).
The situation is drastically different for a periodically

driven open system: Now poles are located not only on one
central line, but also on all copies of that line shifted by
integer multiples of Ω (dashed lines in Fig. 2), according to
Floquet’s formalism. In particular, when the system
becomes critical, all lines extend jointly towards the real
axis. Then, the usual strategy of integrating out high energy
scales to find the effective low energy theory has to be
carefully adapted: The coarse graining has to take place
within each of the lines of poles; but in principle, all the
critical poles associated to different lines have to be taken
into account. Small scales are therefore integrated out as
before, but fast scales remain even at criticality.

We find, however, that the contributions from additional
poles are parametrically suppressed for a weak and fast
drive. We take advantage of this, and devise an expansion in
powers of Ω−1. In addition, we work at one-loop order,
which is systematic to first order in powers of ϵ ¼ 4 − d
[58]. Our approach is a double expansion, and systematic
at OðΩ−1Þ ×OðϵÞ.
The fact that phase transitions can be driven from second

to first order by strong fluctuations occurs also in other
contexts. One class is provided by the Coleman-Weinberg
or Halperin-Lubensky-Ma mechanism, where additional
gapless modes—such as gauge fields [59,60] or Goldstone
modes [61,62]—compete with the critical ones in the
vicinity of a phase transition. A second class derives from
the Potts model, where the common prerequisite is that a
continuous external (order parameter) symmetry is explic-
itly broken down to a nontrivial discrete subgroup [e.g.,
Uð1Þ → Z3 in the Potts model [63,64], or similar phenom-
ena inOðNÞmodels [65,66]]. This allows for new operators
that may turn out to be relevant. Here we reveal another
class, where a continuous internal symmetry (time trans-
lation invariance) is broken down to a discrete one—while
keeping the external phase rotation symmetryUð1Þ ≃Oð2Þ
fully intact. Since discrete time translation invariance and
energy conservation modulo Ω are two sides of the same
coin, this provides an alternative, RG based viewpoint on
our mechanism.
Open Floquet dynamics.—Microscopically, our system

is made of generic interacting particles on a lattice,
governed by a Hamiltonian with a bounded energy spec-
trum, and coupled to an external bath. The periodic
time dependence typically occurs in the Hamiltonian
Hðtþ 2π=ΩÞ ¼ HðtÞ, but it could also enter through
periodic excitations of the bath. The dynamics have a
Uð1Þ phase rotation symmetry, also respected by the drive.
Our focus will be on phase transitions in three-dimensional
systems, where the phase rotation symmetry is broken
spontaneously. In the absence of drive, these are continu-
ous, and correspond to critical points where the order
parameter has strong large-scale fluctuations that over-
whelm the microscopic degrees of freedom. We therefore
employ an effective semiclassical, mesoscopic Landau-
Ginzburg-type model, where only the dynamics of the
complex order parameter ϕ is taken into account quanti-
tatively [67]. The ensuing stochastic dynamics is governed
by the Langevin equation,

i∂tϕ ¼ ½K∇2 − μ − gjϕj2�ϕþ ξ: ð1Þ

ξ is a Gaussian white noise, which has correlation
hξðt; xÞξ�ðt0; x0Þi ¼ 2γδðt − t0Þδðx − x0Þ, with γ > 0, and
vanishes on average.
The couplings K, μ, g are complex valued. Their real

parts account for the coherent dynamics inherited from the
underlying Hamiltonian, and the coupling to the bath is

FIG. 2. Location of the poles of the retarded Green function in
the complex frequency plane. The absence of energy conserva-
tion gives rise to lines of poles spaced by Ω. The imaginary parts
of the pole is the damping rate of the corresponding mode. In a
Floquet system, all the modes have the same damping rate and
reach criticality simultaneously.
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responsible for their imaginary parts [71,72]. These deter-
mine the phase structure of the system’s stationary state. In
particular, a second-order phase transition accompanied
with the spontaneous breakdown of phase rotation sym-
metry occurs in the undriven system when ImðμÞ is lowered
below its critical value. In our case, all couplings are time
dependent with period 2π=Ω, as a consequence of the
microscopic drive. For definiteness, we choose a mono-
chromatic drive

μ ¼ μ0 þ μ1e−iΩt þ μ−1eiΩt;

g ¼ g0 þ g1e−iΩt þ g−1eiΩt; ð2Þ

with γ and K constants [73].
An effectively time independent, yet driven-dissipative

model emerges not only when μ�1 ¼ g�1 ¼ 0, but also in
the limit of infinitely fast driving Ω → ∞. This limit is
appropriate for typical settings in quantum optics, or
quantum optical many-body systems [71,72,75]. In that
case, the driving scale is approximated as infinitely fast
Ω−1 ¼ 0 (rotating wave approximation). This problem
exhibits a true second-order phase transition, but a modified
criticality compared to equilibrium due to the microscopic
breaking of detailed balance [76,77].
Here we focus on weakly and rapidly driven Floquet

systems, where the driving frequency Ω is large, but still of
comparable order to the other energy scales of the problem.
Technically, we incorporate the leading rotating wave
corrections OðΩ−1Þ into the analysis of the near-critical
driven open many-body problem.
Action and symmetries.—We rewrite the stochastic

dynamics of Eq. (1) in terms of a dynamical functional
integral [72,78], using the effective action Γ½Φ�,

eiΓ½Φ� ¼
Z

DφeiðS½Φþφ�þ
R
t;x

φδΓ½Φ�=δΦÞ; ð3Þ

which includes all the field fluctuations, and provides the
correlation and response functions. Equation (1) translates
to the mesoscopic action

S ¼
Z
t;x
Φ†

�
0 G−1

A

G−1
R PK

�
Φþ ðgϕ̃�ϕjϕj2 þ c:c:Þ; ð4Þ

with G−1
R ¼ i∂t − K∇2 þ μ, G−1

A ¼ i∂t − K�∇2 þ μ�, and
PK ¼ iγ. Φ ¼ ðϕ; ϕ̃Þ contains the order parameter ϕ, as
well as the “response” or “quantum” field ϕ̃ that is inherent
to the dynamical functional formalism. The following
symmetry considerations will guide our understanding:
(i) Discrete time translations: Continuous time translations
are implemented by ΦðtÞ → Φðtþ ΔtÞ for arbitrary Δt.
A drive with frequencyΩ, breaks this continuous symmetry
down to a discrete one, Δt ¼ 2πn=Ω with n integer. The
continuous symmetry is restored in the undriven limit

μ�1 ¼ g�1 ¼ 0, but also in the infinitely rapidly driven
limit Ω−1 ¼ 0, where the rotating wave approximation is
applicable. Conversely, its explicit breaking allows for the
presence of additional dimensionful couplings μ�1 and g�1.
These are not compatible with the undriven dynamical ϕ4

theory, and will lead to a new relevant direction at the
Wilson-Fisher (WF) fixed point. (ii) Absence of detailed
balance: Thermodynamic equilibrium can be formulated in
terms of a dynamical symmetry, whose presence is equiv-
alent to the obedience of thermal fluctuation-dissipation
relations, i.e., detailed balance [79–81]. Out of equilibrium,
this symmetry is generically lost. It can, however, formally
be recovered by fine-tuning the drive and the dissipation.
In our case, this would amount to having the ratios of
all pairs of complex couplings to be both real and time
independent (see Supplemental Material III [74]).
Whenever this unnatural fine-tuning is not realized, we
will encounter the effect described in this work. In this
sense, it is generic, or universal, for periodically driven,
open quantum systems.
Single-particle Green functions and critical poles.—The

Wigner representation [14,82–85] of the single-particle
Green functions GnðωÞ, is the double Fourier transform
of the real-time Green functions Gðt; t0Þ (See Supplemental
Material I A [74]). The discrete time-translation invariance
is encoded in the index n. The retarded Wigner Green
function GR;nðωÞ is composed of an infinite sum of poles
located on lines in the complex plane (see Fig. 2 and
Supplemental Material I B [74]). The residues of the poles
of GR;nðωÞ are organized in a power series in μ�1=Ω. This
means that a systematic expansion of the loop corrections
in powers of Ω−1 is obtained by expanding the Green
functions in powers of μ�1=Ω before the frequency
integrations are performed. To order 1 in μ�1=Ω, we find

GR;0ðω; qÞ ¼ hR0 ðω; qÞ; hR0 ðω; qÞ ¼ ðωþ Kq2 þ μ0Þ−1;

GR;n≠0ðω; qÞ ¼ −μnhR0

�
ω −

nΩ
2

; q

�
hR0

�
ωþ nΩ

2
; q

�
:

ð5Þ
hR0 ðω; qÞ describes the fundamental pole in the single-
particle Green functions. We emphasize that this expansion
still captures the correct pole structure and their location,
which is fixed by the Floquet formalism. We see that the
Green functions involve poles separated by integer multi-
ples of Ω, that all become critical as the gap closes
Imðμ0Þ → 0.
Perturbation theory.—As anticipated above, care must

be taken when renormalizing the problem, due to the
absence of a direct meaning of high and low energies.
More practically, this forces us to keep the various poles on
equal footing. This imposes a summation over the Floquet-
Brillouin zone (FBZ) label n in the diagrammatics.
The point is illustrated in the one-loop correction to the
self-energy at zero frequency and momentum,

PHYSICAL REVIEW LETTERS 122, 110602 (2019)

110602-3



Δμ0 ¼ 2i
X
n

Z
ω;q

gnGK;−nðω; qÞ: ð6Þ

Using GK ¼ −GRPKGA and inserting the expansion
Eq. (5), we can perform the frequency integration and
expand it to OðΩ−1Þ

Δμ0 ¼ γ

Z
q

1

jImðKq2 þ μ0Þj
ðg0 þ ixÞ;

x ¼ i
Ω

X
n≠0

g−nðμn − μ�−nÞ
n

≡X
n≠0

g̃n: ð7Þ

This shows explicitly the appearance of divergences from
the n ¼ 0 term, describing processes exclusively within the
zeroth FBZ but also from n ≠ 0, which describe scattering
between different FBZs enabled by the drive. Along the
frequency integral of Eq. (6), each pole contributes with the
same degree of divergence. For a monochromatic drive
however, we find ResðωnÞ ∼ ðμ�1=ΩÞn, which leads to a
suppression of terms involving higher FBZs. Thus, all the
FBZs contribute to the critical physics through these
divergences, but interactions between different FBZs are
parametrically small in Ω−1.
RG analysis.—Equipped with the understanding of para-

metrically small but equally divergent contributions from
the coupling to higher FBZs at leading order in Ω−1, we
proceed to the resummation of these divergences in an RG
analysis to study their impact on the critical behavior.
We first fix the canonical power counting: We transform
spatial and temporal coordinates as q̂ ¼ q=k and ω̂ ¼
ω=½ImðKÞk2�. The couplings are then rescaled as

μ̂n ¼ k−2
μn

ImðKÞ ; ĝn ¼ kd−4
γgn

4ImðKÞ2 ; ð8Þ

(with g̃n being rescaled as gn). To keep the argument of the
oscillatory functions dimensionless, we also rescale Ω̂ ¼
Ω=½ImðKÞk2�.
In order to assess the relevance of these couplings at the

interacting WF fixed point established at Ω−1 ¼ 0 [77], we
include fluctuations into our RG analysis. To this end, we
work at leading order in the ϵ ¼ 4 − d expansion, which
requires us to include one-loop corrections. The RG flow
equations for μ and g take the form of a coupled set of
differential equations for the dependence of the Fourier
modes μn and gn, on the running cutoff scale k (see
Supplemental Material II [74]). To order Ω−1, the RG flow
equations of μ̂0 and ĝ0 are

k∂kĝ0 ¼ −ϵĝ0 þ
10Sd

j1þ μ̂0jð1þ μ̂0Þ
ĝ0

�
ĝ0 þ

X
m

ˆ̃gm≠0

�
;

k∂kμ̂0 ¼ −2μ̂0 −
4Sd

j1þ μ̂0j
�
ĝ0 þ

X
m≠0

ˆ̃gm

�
; ð9Þ

with Sd ¼ 2πd=2=½ðd=2 − 1Þ!ð2πÞd�. The drive parameter is
x̂ ¼ P

m
ˆ̃gm. Here and in the following we have simplified

our system to make the computation more transparent: We
choose K, μ, and g to be purely imaginary. Physically, this
anticipates the decoherence that occurs in the vicinity of the
phase transition, where all coherent dynamics fades away
under coarse graining [77]. We have extracted a factor i
from μ0, g0, and K. The couplings were renamed as
μ0 ¼ iμ00, g0 ¼ ig00 and K ¼ iK0 with μ00, g

0
0 and K0 real.

We omit the primes to simplify the notation.
In principle, additional variables must be taken into

account to compute the RG flow of x̂, since it depends on
all the harmonics of μ and g [see Eq. (7)]. However, as we
show in Supplemental Material II A [74], the loop correc-
tions to the flow of x can be neglected at OðΩ−1Þ ×OðϵÞ,
giving rise to simple dimensional running

k∂kx̂ ¼ −ϵx̂: ð10Þ

The RG flow Eqs. (9) and (10) provide a generalization
of the well-known, time translation invariant, RG flow.
Indeed, the WF fixed point emerges when x̂ ¼ 0 (and μ̂0 ¼
μ� and ĝ0 ¼ g�). Our analysis reveals that the periodic drive
gives rise to a new relevant coupling. In the absence of
continuous time translation invariance, the critical point is
thus bicritical: Two fine-tunings are necessary to reach it,
and to reveal its critical scaling properties. Thus, when
tuning across the symmetry breaking phase transition at
finite Ω−1 (along the dotted line of Fig. 1) the additional
relevant direction provides a finite correlation length.
Moreover, in the absence of drive and far away from the
critical point, the system is either in a disordered or an
ordered phase. This property is robust for a finite, rapid
drive since the Green functions are gapped in these phases
(cf. Fig. 2), and perturbation theory converges [86]. This
gives rise to a symmetry breaking phase transition without
asymptotic criticality, which must be interpreted as a
fluctuation induced first order transition.
The linear stability analysis of the RG flow equations

close to the WF fixed point provides three quantitative
predictions: (i) New scaling exponent: We find three critical
exponents: −2þ 2ϵ=5 ¼ −1=ν, ϵ and a new independent
exponent −ϵ ¼ −1=νd. The first two are known from the
equilibrium system, with the first being negative and
corresponding to the relevant direction. When the system
is infinitely rapidly driven, it is tuned to criticality by tuning
μ and/or g such that δt ¼ Aðδgþ 4π2δμÞ vanishes (with
A > 0 a nonuniversal constant, δμ ¼ μ̂0 − μ�0 and
δg ¼ ĝ0 − g�0). Then the correlation length diverges as
ξ ∼ δt−ν. In the presence of a drive however (x̂ ≠ 0), the
correlation length never diverges. δt can be tuned to
maximize it (or, in RG terms, bring the flow as close as
possible to the WF fixed point), but ξ ultimately crosses
over to a finite value that scales as ξ ∼ x̂−νd . (ii) Shift of the
phase transition: The location of the phase transition is
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shifted in a nonuniversal although drive-dependant way.
The macroscopic phase is ultimately determined by the sign
of Δt ¼ δtþ Ax̂. See Fig. 1 and Supplemental Material VI
[74] for additional details. (iii) Observability of scaling:
The above scaling analysis can be refined by replacing δt
by Δt. x̂ and Δt control the crossover between the two
scaling regimes. For jΔtj ≫ jx̂jνd=ν, the undriven relevant
coupling dominates and the correlation length scales as
ξ ∼ Δt−ν. When jΔtj ≪ jx̂jνd=ν the correlation length sat-
urates to ξ ∼ x̂−νd . This crossover is represented as red
dashed lines in Fig. 1. The correlation length scales with Δt
outside of the light red area and it saturates as the dashed
red lines are crossed. In particular, this implies that the new
critical exponent νd can be observed by varying Ω.
Conclusion.—There is an interesting “duality” of our

scenario to the paradigmatic Kibble-Zurek phenomenology
[87,88]. Both the equilibrium limit of an undriven system
Ω ¼ 0, and the infinitely rapidly driven limit Ω−1 ¼ 0,
afford time-independent descriptions, and exhibit sym-
metry breaking continuous phase transitions. Here we have
shown that asymptotic scaling is cutoff at any finite Ω−1.
The Kibble-Zurek phenomenon occurs in the opposite limit
of a slow driving: The nonequilibrium conditions are
encoded in a slow quench of the couplings. Then the
quench rate is analogous to x; it stops the correlation length
from diverging. Although the underlying mechanisms are
very different, in both cases the critical physics is masked
and observable only upon smoothly approaching the
extreme limiting cases. We reserve the exploration of this
connection to future work.
Another intriguing direction of research concerns the

applicability of our results to possible phase transitions in
long-lived transient states of Floquet systems not coupled
to external baths [10–12,15,16,18,20].
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