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We propose a novel strategy to reconstruct the quantum state of dark systems, i.e., degrees of freedom
that are not directly accessible for measurement or control. Our scheme relies on the quantum control of a
two-level probe that exerts a state-dependent potential on the dark system. Using a sequence of control
pulses applied to the probe makes it possible to tailor the information one can obtain and, for example,
allows us to reconstruct the density operator of a dark spin as well as the Wigner characteristic function of a
harmonic oscillator. Because of the symmetry of the applied pulse sequence, this scheme is robust against
slow noise on the probe. The proof-of-principle experiments are readily feasible in solid-state spins and
trapped ions.
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Introduction.—The measurement of the quantum state of
a system is a prerequisite ingredient in most modern
quantum experiments, ranging from fundamental tests of
quantum mechanics [1,2] to various quantum-information-
processing tasks [3–5]. However, even with the rapid
progress in the coherent manipulation and quantum-state
tomography of several quantum systems, such as photons
[6,7], electron spins [8–10], atomic qubits [11], super-
conducting circuits [12,13], and mechanical resonators
[14,15], many quantum systems still remain difficult to
access for a direct observation of their state, systems we
will refer to as dark. In order to circumvent the requirement
of such a direct access, a promising technique is to employ
an auxiliary quantum system as a measurement probe, on
which measurements as well as coherent manipulations can
be performed [16–23]. Interferometry [24] based on such a
measurement probe allows us to extract information on a
target system [25–30]. Nevertheless, it still remains a key
challenge to achieve a full quantum-state tomography of
dark systems without requiring any direct control.
In this Letter, we propose a general scheme for a probe-

measurement based quantum-state reconstruction of dark
systems, where the obtainable dark-system quantities can
be tailored by a pulsed control of the two-level probe we
employ. The scheme does not require any manipulation of
the dark systems or the controllability of the coupling to the
probe. This is a requirement on which, for example, many
previous reconstruction methods for continuous-variable
systems depend [31–36]. Additionally, it inherits the
feature of robustness against noise on the probe from
pulsed dynamical decoupling [37–39], making it suitable
also for noisy environments such as solid-state platforms.
The proposed strategy is exemplified at the quantum-state
tomography of a dark spin-1=2 and a dark harmonic

oscillator by reconstructing their density operator and
Wigner characteristic function, respectively. We discuss
the feasibility of the proof-of-principle experiments to
testify the distinct advantages of the present proposal in
solid-state spin [40–43] and trapped-ion systems [44–46]
within state-of-the-art experimental capabilities. The
scheme is applicable to other dark systems as in a variety
of physical settings, making it a versatile tool for quantum
measurements.
Pulsed state-reconstruction scheme.—The probe we

consider is a generic two-level system described by the
Hamiltonian Hp ¼ ðωp=2Þσpz , with the Pauli operator
σpz ¼ j1iph1j − j0iph0j. We denote the Hamiltonian of the
dark system by Hd. The underlying idea of the proposed
scheme is that the interaction between the probe and the
dark system is given by probe-state-dependent potentials
H0 and H1 for the dark system, i.e., an interaction of the
form Hint ¼ j0iph0jH0 þ j1iph1jH1. The dynamics of the
combined system is then governed by Hp þHd þHint

and in the interaction picture with respect to Hp this
Hamiltonian has the form

H ¼ j0iph0jV0 þ j1iph1jV1; ð1Þ

with V0 ¼ Hd þH0 and V1 ¼ Hd þH1 acting on the dark
system. The dynamics generated by this Hamiltonian is
used to obtain information about the state of the dark
system.
In order to do so, the probe is initialized in the super-

position state jþip ¼ ðj0ip þ j1ipÞ=
ffiffiffi
2

p
, such that the initial

state of the full system has the form jΨð0Þi ¼ jþipjψi, with
the dark-system state jψi. The free evolution of this state
under the Hamiltonian (1) generates entanglement between

PHYSICAL REVIEW LETTERS 122, 110406 (2019)

0031-9007=19=122(11)=110406(7) 110406-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.110406&domain=pdf&date_stamp=2019-03-21
https://doi.org/10.1103/PhysRevLett.122.110406
https://doi.org/10.1103/PhysRevLett.122.110406
https://doi.org/10.1103/PhysRevLett.122.110406
https://doi.org/10.1103/PhysRevLett.122.110406


the probe and the dark system and thereby allows us to
connect measurements on the probe with quantities of the
dark system. However, as we will show, appreciably more
information can be obtained by the application of a series
of pulses that manipulate the probe [47,48]. Explicitly, we
apply a series of 2N π pulses, all separated by the free-
evolution time τ, and therebymodulate the effective potential
acting on the dark system. After such an evolution of total
time t ¼ 2Nτ the state of the full system has evolved into

jΨðtÞi ¼ 1ffiffiffi
2

p ðj0ipU0jψi þ j1ipU1jψiÞ; ð2Þ

where the state-dependent dark-system time-evolution oper-
ators are given by U0 ¼ uN0 and U1 ¼ uN1 , with the single
pulse-segment evolution operators

u0 ¼ expð−iV1τÞ expð−iV0τÞ;
u1 ¼ expð−iV0τÞ expð−iV1τÞ: ð3Þ

In order to obtain any information on the dark-system state
from this dynamics, a necessary condition is that the operators
V0 and V1 do not commute, since otherwise the above
evolution operators coincide. Following this time evolution,
a measurement of the probe Pauli vector σp ¼ ðσpx ; σpy ; σpz Þ
can be performed resulting in hσpi ¼ TrfσpϱðtÞg, with
ϱðtÞ ¼ jΨðtÞihΨðtÞj. The generalization to initially separable
density operators of the form ϱð0Þ ¼ jþiphþjρ, with the
possibly mixed initial dark-system density operator ρ, is
straightforward and yields

hσpx i ¼ 1

2
TrfðU†

0U1 þU†
1U0Þρg;

hσpy i ¼ 1

2i
TrfðU†

0U1 − U†
1U0Þρg; ð4Þ

and hσpz i ¼ 0. As we see, the probe-measurement outcomes
hσpx i and hσpy i are, respectively, equal to the expectationvalue
of the real and imaginary part of the operator U†

0U1 in the
initial dark-system state ρ. These expectation values are the
information we can extract through Pauli measurements on
the probe and by changing the pulse-sequence parameters τ
and N we can control to which dark-system quantity they
correspond. The information is extracted by measuring the
coherence of the probe and its dephasing thus affects the
reconstruction fidelity. The scheme is feasible as long as
the extended probe coherence time by the pulsed strategy is
longer than the total measurement time. Up to this point we
make no assumption on the nature of the dark system. In the
followingwegive two explicit examples, one discrete and one
continuous variable system, and demonstrate in both cases
how the unitaryU†

0U1 can be engineered in order to performa
state reconstruction of these dark systems.

State reconstruction of a spin-1=2 system.—As a first case
we consider a dark spin-1=2 system. Its density operator
can be written as ρ ¼ ð1þ r · σÞ=2, with the unity operator
1, the dark-spin Pauli vector σ, and the Bloch vector r
fulfilling r ¼ Trfσρg. On the other hand, the unitary U†

0U1

takes the form U†
0U1 ¼ cosϕ1 − i sinϕn · σ, with a unit

vector n. Comparing this expression with Eq. (4)
reveals hσpx i ¼ cosϕ and allows us to connect the probe-
measurement outcome hσpy i with the dark-spin Bloch
vector r according to

hσpy i ¼ − sinϕn · r: ð5Þ
Three independent measurements for different pulse-
sequence parameters τ and N are thereby sufficient for a
full state reconstruction of the dark spin. It can also be seen
that for a faithful measurement of any component of the
dark-spin Bloch vector a crucial condition is cosϕ ¼ 0.
This additionally makes it possible to engineer the pulse
sequences such as to obtain the three components rκ
separately by ensuring sinϕnκ ¼ −1, for κ ¼ x, y, z.
For a general dark-spin HamiltonianHd ¼ ðω0=2Þσz this

reconstruction can be achieved by the probe-state-depen-
dent potentials H0 ¼ 0 and H1 ¼ ðaz=2Þσz þ ðax=2Þσx,
where az and ax arise from the coupling between the probe
and the dark spin. This results in the Hamiltonians

V0 ¼
ω0

2
σz; V1 ¼

ω1

2
ðvxσx þ vzσzÞ; ð6Þ

with vx¼ax=ω1, vz¼ðω0þazÞ=ω1, and ω2
1¼ðω0þazÞ2 þ

a2x. The above Hamiltonians represent one effective longi-
tudinal field of strength ω0 associated with the probe
ground state and the other one of strength ω1 associated
with the probe excited state, which is tilted from the z
direction by the angle arctanðvx=vzÞ. From these state-
dependent effective fields and the pulse sequence applied
to the probe one can obtain the explicit form of the
operator U†

0U1.
Every pulse-sequence segment of length 2τ, i.e., first an

evolution under V0 and then under V1, or vice versa,
produces a state-dependent rotation given by the unitaries
uk ¼ expð−iθnk · σÞ, for k ¼ 0, 1, respectively. Here, the
angle θ satisfies cos θ ¼ cos α cos β − vz sin α sin β and the
two rotation axes fulfill n0 · n1 ¼ 1–2v2x sin2 α sin2 β=
sin2 θ, with α ¼ ω0τ=2 and β ¼ ω1τ=2. The operators
Uk ¼ uNk are then rotations around the same axis, but by
the angle Nθ and one obtains the expressions [40,42,49]

cosϕ¼ 1− sin2ðNθÞð1−n0 ·n1Þ;

n¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−n0 ·n1Þ

p
sin2ðNθÞ

sinϕ sinθ

2
64
sinα cosβþ vz cosα

sinβ sinθ cotðNθÞ
−vx cosα sinβ

3
75;

ð7Þ
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for the quantities ϕ and n. This is their functional
dependence on the pulse-sequence parameters τ and N,
which can be used to fully determine the Bloch vector r,
according to Eq. (5), from three independent probe
measurements.
Among the possible choices for the parameters τ and N,

which ensure cosϕ ¼ 0, we can choose to measure the
observables corresponding to the three components rκ of
the Bloch vector, for which the additional condition
sinϕnκ ¼ −1 has to be fulfilled, for κ ¼ x, y, z. As an
example, in the y case, these two conditions are n0 · n1 ¼
−1 and sin2ðNθÞ ¼ 1=2. Here, the first one is fulfilled for
the evolution time τ1 ¼ 2π=ðω1 þ ω0Þ and the second one
for N ¼ π=4vx, yielding sinϕny ¼ −1 [49]. The results
for the measurement of ry are illustrated in Fig. 1, where we
show j sinϕnyj as a function of τ and N. Our further
simulations demonstrate that the measurement protocol is
very robust against noise acting on the probe [49]. As a
brief note, wemention that without the application of pulses,
one would have the unitaryU†

0U1 ¼ expðiV0τÞ expð−iV1τÞ
and the reachable pointswithin theBloch sphere are confined
to a cylinder of radius vx around the z axis, making a
measurement of rx and ry impossible. The further generali-
zation to multispin dark systems is feasible by employing

sufficient controllability conditions and the technique of
Cartan decomposition [61]. We also remark that the meas-
urement of some specific observable may already be of
significant interest, e.g., for entanglement and quantum-
criticality detection [49,62–64].
State reconstruction of a harmonic oscillator.—As a

second case we consider a continuous-variable dark sys-
tem, which is formed by a harmonic oscillator of frequency
ν with the annihilation operator a. The interaction between
the probe and the harmonic oscillator is assumed to be of
the form Hint ¼ ðg=2Þσpz ðaþ a†Þ, leading to the state-
dependent Hamiltonians

V0 ¼ νa†a −
g
2
ðaþ a†Þ; V1 ¼ νa†aþ g

2
ðaþ a†Þ:

ð8Þ

Using the multiplication properties of the displacement
operator DðηÞ ¼ expðηa† − η�aÞ, in a picture displaced
by g=2ν, the operator U†

0 can be brought into the form
DðζÞ expð2iNντa†aÞ, while U1 similarly is of the form
Dðζ�Þ expð−2iNντa†aÞ, where ζ is a function of τ and N
[49]. In this way, we can obtain the unitary U†

0U1 ¼ DðξÞ
in the simple form of a single displacement operator with
the quantity

ξðτ; NÞ ¼ −2
g
ν sinðNντÞ tan

�ντ
2

�
eiNντ; ð9Þ

which depends on the pulse-sequence parameters τ and N
[49]. Equation (4) then yields

hσpx i þ ihσpy i ¼ χðξÞ; ð10Þ

with the Wigner characteristic function χ, which is defined
as χðξÞ ¼ TrfDðξÞρg [50]. This function over reciprocal
phase space is the complex Fourier transform of the Wigner
function [65] and contains all information on the initial
density operator ρ of the harmonic oscillator. For a full
knowledge of the characteristic function, the completeness
of the displacement operators [50] allows an exact
reconstruction of the density operator itself according to
ρ ¼ R

d2 ξχðξÞD†ðξÞ=π. For example, in the Fock basis, the
matrix elements hnjρjmi can easily be obtained using this
expression and the matrix elements of the displacement
operator hnjD†ðξÞjmi [50].
In our scheme, every fixed pulse-sequence parameter N

corresponds to a closed curve ξðτ; NÞ in reciprocal phase
space, shown in Fig. 2(a) for several pulse numbers. Their
periodicity in τ is determined by the harmonic oscillator
frequency ν, requiring a maximal necessary evolution time
of τ ¼ 2π=ν. The maximal distance from the origin is
reached for τ ¼ π=ν and has the value 4Ng=ν; i.e., it scales
linearly with the pulse number. By varying N we can
sample the characteristic function along this manifold of

(b) (a)

(c)

FIG. 1. Measurement of hσyi of a dark spin-1=2 system.
(a) Dependence of j sinϕnyj on the pulse-sequence parameters
τ andN for az ¼ 0.015ω0 and ax ¼ 0.08ω0. (b) Vertical cut along
the free evolution time τ1 ¼ 2π=ðω1 þ ω0Þ, indicated by red
circles in (a), resulting in an optimal pulse-cycle number
N ¼ π=4vx ¼ 10. (c) Horizontal cut along N ¼ 10, indicated
by blue lines in (a).
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curves, as shown by blue lines in Fig. 2(b) for the
example of a squeezed vacuum state SðλÞj0i, with SðλÞ ¼
exp½ðλ�a2 − λa†2Þ=2�. For a real squeezing parameter
λ¼ logð1=2Þ, as chosen here, and ξ¼ξrþiξi the correspond-
ing characteristic function is χðξÞ ¼ expð−ξ2r =8 − 2ξ2i Þ.
The property χð−ξÞ ¼ χðξÞ� allows us to obtain the values
of χ along these curves mirrored around the origin by
complex conjugation, as represented by red curves in
Fig. 2(b).
Figure 2(c) shows the density matrices reconstructed

from the characteristic function for the squeezed vacuum
state from Fig. 2(b) and a coherent state by an interpolation
of χ using N ¼ ð1;…; 20Þ. The results are in good agree-
ment with the exact density matrices, showing trace
distances of the order 10−3 [49]. As a comparison, for
the case of no pulses applied to the probe only points on the
circle ξ ¼ g½expðiντÞ − 1�=ν in reciprocal phase space can
be sampled, which would be insufficient for a satisfactory
state reconstruction.
The fact that the characteristic function has its maximum

χð0Þ ¼ 1 at the origin, and is mostly centered in this region,

is favorable in experiments since the density of reachable
points ξ is high close to the origin. In contrast, the Wigner
function, which contains the same information, can have its
maximum at any point in phase space, making it necessary
to scan over larger areas with schemes for its measurement.
We also stress that contrary to other methods for the
measurement of phase-space distributions, this scheme
does not require any manipulation of the harmonic oscil-
lator, such as a displacement operation prior to the
measurement procedure, or a control of the coupling
strength. This advantage would become particularly impor-
tant for systems in which direct manipulation on the
harmonic oscillator is hard to achieve.
Potential experimental implementations.—As an exam-

ple for the state tomography of a spin-1=2 system, we use a
nitrogen-vacancy (NV) center as a probe and a dark spin of
a weakly coupled 13C nucleus in diamond [66]. Under an
external magnetic field of strength B along the NVaxis, i.e.,
the z direction, the Hamiltonians then read HNV ¼ DS2z þ
γeBSz and HC ¼ γCBIz, where γe and γC are the gyro-
magnetic ratios of the NV-center spin and the 13C nuclear
spin, respectively, and D=2π ¼ 2.87 GHz is the electron-
spin zero-field splitting. Furthermore, the components of Sκ
and Iκ denote their respective spin-1 and spins-1=2 oper-
ators, for κ ¼ x, y, z. One can choose the x direction such
that the hyperfine interaction between the NV center and
the nuclear spin is of the form Hhf ¼ AkSzIz þ A⊥SzIx
[40]. The external magnetic field allows us to address
specific transitions of the NV-center electronic states and
thereby, for example, to use the two states j0ip ¼ jms ¼ 0i
and j1ip ¼ jms ¼ 1i as our probe. This results in the state-
dependent effective fields acting on the 13C nuclear spin
given by Eq. (6) with ω0 ¼ γCB, az ¼ Ak, ax ¼ A⊥, and
σκ ¼ 2Iκ, for κ ¼ x, y, z. As an example, we consider a
weakly coupled 13C with Ak=2π ¼ 2.54 and A⊥=2π ¼
13.22 kHz under a magnetic field B ¼ 15.4 mT, which
are the parameters used in Fig. 1. The assumption of
instantaneous π pulses is well justified, since pulse dura-
tions tπ of tens of nanoseconds have been realized, and the
free-evolution time for the measurement of Bloch vector
components thereby fulfill tπ ≪ τ [38,67,68]. The con-
dition 2Nτ < T2p for the total evolution time can also be
satisfied for achievable long probe coherence times T2p

[39,69,70].
To show the feasibility of an experimental demonstration

for a continuous-variable dark system, we consider the
motional-state reconstruction of a single trapped ion in a
magnetic field gradient [44,45]. We orient ourselves at
parameters from Ref. [46] with single 171Ybþ ions trapped
in a linear Paul trap with an axial frequency ν=2π ¼
117 kHz. In this setup, a magnetic field of the form BðzÞ ¼
B0 þ B1z is applied along the trap axis z. As a probe two-
level system one can choose the two sublevels j0ip ¼
jms ¼ −1=2i and j1ip ¼ jms ¼ 1=2i with mF ¼ 0 of the

(a)

(b)

(c)

FIG. 2. State reconstruction of a dark harmonic oscillator.
(a) Reachable points ξ in reciprocal phase space for different
numbers of pulse cycles, N ¼ 1 and N ¼ 5 in the first two panels
and all points for N ¼ ð1;…; 10Þ in the right panel. (b) First 20
contour lines (blue) sampled from the characteristic function of
a squeezed vacuum state SðλÞj0i, with λ ¼ logð1=2Þ and
g=ν ¼ 3=40. Red curves are obtained using χð−ξÞ ¼ χðξÞ�.
(c) Density matrices reconstructed from an interpolated character-
istic function obtained from N ¼ ð1;…; 20Þ for g=ν ¼ 3=40. Left
panel: Squeezed vacuum from (b). Right panel: Coherent state
jηi ¼ DðηÞj0i with η ¼ 1. Gray inner bars represent the exact
values for comparison.
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2S1=2 state, whose coherence time can be longer than 1000 s
[71]. The linear magnetic field gradient B1 induces a
coupling between the ion motion and the probe of the
form Hint ¼ ðg=2Þσpz ðaþ a†Þ, yielding the Hamiltonians
V0 and V1 given in Eq. (8). The coupling strength is
determined by g ¼ 2μBB1=

ffiffiffiffiffiffiffiffiffiffiffiffi
2Mℏν

p
, with the Bohr mag-

neton μB and the ion mass M. For the reported magnetic
field gradient B1 ¼ 19 T=m, this results in a coupling ratio
of g=ν ¼ 0.072, which is roughly the one we used above in
Fig. 2. In this system, high-fidelity π pulses with durations
on the order of tens of picoseconds have also been
demonstrated for these 2S1=2 states [72].
Conclusions and outlook.—We present a general scheme

for the quantum-state reconstruction of a dark system,
which is inaccessible for direct control and measure-
ments. The scheme only relies on the pulsed control and
readout of a probe-two-level system, while requiring no
manipulation of the target system. We illustrate our idea
at the state tomography of a spin and a harmonic
oscillator. For both examples, we show the feasibility
to implement proof-of-principle demonstrations in cur-
rently available experimental setups. Moreover, the meas-
urement scheme is intrinsically robust against slow noise
acting on the probe due to the incorporated dynamic
decoupling. The present idea provides a versatile tool for
quantum-state measurement and can be extended to more
general scenarios, such as dark systems formed by higher
spins, many-body systems, and novel mechanical sys-
tems. A further generalization to a sequence of nonequi-
distant pulses and continuous processes is possible and
may increase the information that can be obtained of the
dark system.
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