
 

Quantum Critical Regime in a Quadratically Driven Nonlinear Photonic Lattice

Riccardo Rota,1,* Fabrizio Minganti,2,3 Cristiano Ciuti,2 and Vincenzo Savona1
1Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
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We study an array of coupled optical cavities in the presence of two-photon driving and dissipation. The
system displays a critical behavior similar to that of a quantum Ising model at finite temperature. Using the
corner-space renormalization method, we compute the steady-state properties of finite lattices of varying
size, both in one and two dimensions. From a finite-size scaling of the average of the photon number parity,
we highlight the emergence of a critical point in regimes of small dissipations, belonging to the quantum
Ising universality class. For increasing photon loss rates, a departure from this universal behavior signals
the onset of a quantum critical regime, where classical fluctuations induced by losses compete with long-
range quantum correlations.
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The emergence of critical phenomena in the nonequili-
brium steady state (NESS) of open quantum systems [1–3],
arising from the competition between the incoherent and
coherent dynamics, is a topic that has gathered increasing
attention in recent years, especially in view of the possible
experimental realization of model systems using circuit
QED [4–6], lattices of ultracold atoms [7–10], or other
advanced quantum platforms [11,12]. Several theoretical
studies have highlighted the possibility of dissipative phase
transitions in various many-body systems [1–4,13–32],
possibly displaying novel universal properties [33]. In this
regard, the question about the role played by quantum
fluctuations in these critical phenomena is still a matter of
debate.
Bosonic systems on a lattice have been the object of

several studies, motivated by the analogy with the
Hamiltonian Bose-Hubbard model and by the possibility
to realize experimental studies using arrays of optical cavi-
tieswith a third-order optical nonlinearity [26–30,34–39]. In
recent years, the driven-dissipative Bose-Hubbard model in
the presence of a two-photon—i.e., quadratic in the field—
driving term has been studied both theoretically [19,25,40–
49] and experimentally [50,51]. This quadratically driven
scheme has been proposed, in particular, as a possible
realization of a noise-resilient quantum code, where pho-
tonic Schrödinger’s cat states with even and odd photon
number parity behave as interacting spin degrees of freedom
[42–45,50]. This finding is suggestive of a possible scheme
for realizing a photonic simulator of quantum spin models
[52] and allows for a completely novel approach to the study
of dissipative phase transitions. Indeed, while widely stud-
ied one-photon driving breaks the Uð1Þ symmetry of the
Hamiltonian, two-photon driving preserves a Z2 symmetry
which can be spontaneously broken [25,49], giving rise to a

second order phase transition that is similar to that of the
quantum transverse Ising model [53].
The analogy to a quantum spin model leads one to expect

that, in the limit of low losses, this model should display
a quantum critical point (QCP) [54] separating a symmetric
and a broken symmetry phase, in the vicinity of which the
system is characterized by extensive long-range entangle-
ment. The classical fluctuations induced by small losses
may then induce a quantum critical regime (QCR), i.e., a
region in the phase diagram where classical fluctuations
populate highly quantum correlated excitations and the
spectral and dynamical properties of the system are
characterized by a universal behavior which is the object
of intense investigations today [55–60].
QCPs have been observed inmagnetic insulators [61–63],

heavy-fermion metals [58], high-temperature superconduc-
tors [64], and ultracold atoms [8,65–67]. Evidence of a QCR
has recently been found in the magnetic phase diagram of
cobalt niobate [68]. The possibility of simulating the physics
of the QCR on a driven-dissipative photonic platformwould
represent a unique opportunity to study this phenomenon in
a controlled setting where all relevant correlations can be
experimentally accessed [6,51,69].
In this Letter, we will present a beyond mean-field

investigation of a lattice of coupled optical resonators subject
to a two-photon driving field and to one- and two-photon
losses. We show that this system is characterized by a phase
diagram which bears full analogy with that of the quantum
transverse Ising model at finite temperatures. For both 1D
chains and 2D lattices, in the limit of small loss rates, we
observe the emergence of a QCP belonging to the same
universality class of the quantum transverse Ising model. At
larger loss rates, a departure from the universal scaling
characterizing the QCP suggests the occurrence of a QCR.
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A lattice of coupled optical resonators, in the presence of
a Kerr nonlinearity and two-photon driving, is modeled by
the quadratically driven dissipative Bose-Hubbard model.
In the reference frame rotating with half of the pump
frequency (ℏ ¼ 1), the Hamiltonian reads

Ĥ ¼
X

j

− Δâ†j âj þ
U
2
â†2j â2j þ

G
2
â†2j þG�

2
â2j

−
X

hj;j0i

J
z
ðâ†j âj0 þ â†j0 âjÞ: ð1Þ

Here, âj is the photon destruction operator acting on the jth
site,U is the energy associated to the Kerr nonlinearity,G is
the two-photon driving field amplitude, and Δ ¼ ωp=2 −
ωc is the detuning between half of the two-photon driving
field frequency ωp and the resonant cavity frequency ωc.
The last term in the equation models the photon hopping
between nearest-neighbor cavities hj; j0i, J and z being,
respectively, the hopping strength and the number of
nearest neighbors.
In the presence of weak Markovian coupling to an

environment, the system is described by the density matrix
ρ̂ðtÞ which obeys the quantum master equation in Lindblad
form

∂ρ̂
∂t ¼ −i½Ĥ; ρ̂� þ

X

j;k

Γ̂j;kρ̂Γ̂†
j;k −

1

2
fΓ̂†

j;kΓ̂j;k; ρ̂g: ð2Þ

Here, the jump operators Γ̂j;1 ¼ ffiffiffi
γ

p
âj and Γ̂j;2 ¼ ffiffiffi

η
p

â2j
induce, respectively, the one- and two-photon losses from
the jth cavity. In the limit of long time, the system evolves
towards a nonequilibrium steady state ρ̂ss, which satisfies
the condition dρ̂ss=dt ¼ 0.
The Hamiltonian (1) commutes with the parity of the

total photon number operator Π̂ ¼ expðiπPjâ
†
j âjÞ and

Eq. (2) is invariant under a global change of sign of the
fields, âj → −âj ∀ j, resulting in a Z2 symmetry of the
system [49]. Thus, our model is expected to display a
dissipative phase transition associated to the spontaneous
breaking of the Z2 symmetry, as suggested by a mean-field
analysis [25]. In the absence of classical fluctuations, the
phase transition may assume a quantum nature.
In order to clarify the nature of the quantum phase

transition in the present system, it is useful to briefly revisit
the single-site problem. It was shown that the steady state of
the single Kerr resonator, for small detuning and for small
loss rates, is well approximated by a statistical mixture of
two Schrödinger’s cat states with opposite parity [40],

ρ̂ ¼ pþjCðþÞ
α ihCðþÞ

α j þ p−jCð−Þ
α ihCð−Þ

α j. Here, jCð�Þ
α i ¼

ðjαi � j − αiÞ=N �
α , where jαi is a coherent state and

N �
α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� e−2jαj2Þ

q
is a normalization factor. The

relevant local Hilbert space is, therefore, approximately

spanned by two states only, as in a quantum S ¼ 1=2 spin
system. The displacement α (which is generally complex,
even for real-valued G) is determined uniquely by the
values of the system parameters, and its amplitude can be
varied by changing G [70].
Hence, when the driving term is resonant with the

minimum of the single particle energy band and the loss
rates are small, the quadratically driven dissipative Bose-
Hubbard model can be approximated with a spin model,
where the even and odd cat states on each lattice site
correspond, respectively, to the spin-up and spin-down

states (jCðþÞ
α i → j↑i, jCð−Þ

α i → j↓i). The Hamiltonian (1),
projected onto the cat state basis, is then expressed (up to a
constant additive term) as

ĤXY ¼ −
Δjαj2
2

A−

X

j

σ̂ðzÞj

−
Jjαj2
2z

X

hj;j0i
½ðAþ þ 2Þσ̂ðxÞj σ̂ðxÞj0 þ ðAþ − 2Þσ̂ðyÞj σ̂ðyÞj0 �;

ð3Þ

where A� ¼ tanh jαj2 � ðtanh jαj2Þ−1 and σ̂ðlÞj (with
l ∈ fx; y; zg) are the Pauli matrices acting on the jth
spin [70].
The Hamiltonian (3) is that of the quantum XY model,

that is a generalization of the quantum transverse Ising
model. It is characterized by a QCP both for 1D arrays and
2D lattices [53]: the critical exponents of a d-dimensional
quantum transverse Ising model are the same as a (dþ 1)-
dimensional classical Ising model [54]. In the present Bose-
Hubbard model, a quantum phase transition can be induced
by tuning the displacement α in Eq. (3) through the driving
field G. In particular, in the limit of large G=γ and, thus, of
large jαj, the XX term dominates in Eq. (3). This limit
corresponds to a quantum Ising model at a vanishing
external field. Then, the Z2 symmetry is spontaneously
broken and two equivalent states jΨ�i ¼

Q
jðj↑ji � j↓jiÞ

dominate the steady state of the system, in analogy with the
ferromagnetic phase of the quantum Ising model. In this
limit, the steady-state density matrix is approximated by a
statistical mixture of the two dominant states with equal
weights, and the von Neumann entropy, correspondingly,
will approach S ¼ logð2Þ. Notice that two dominant
quantum states in the large-jαj limit can also be expressed
as jΨ�i ¼ j�α;…;�αi, thus, recovering the mean-field
picture of the broken symmetry [25,42–45]. When the
value of G=γ is reduced, the first term in Hamiltonian
Eq. (3) becomes more relevant and plays the role of an
external field along Z, eventually inducing a quantum
phase transition. In the new phase, the dominant quantum
state becomes jΨi ¼ Q

jj↑ji. This state has even parity
and, for vanishing jαj, coincides with the bosonic vacuum.
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Unlike two-photon losses, one-photon losses Γ̂j;1 pro-

duce jumps between jCðþÞ
α i and jCð−Þ

α i and, thus, tend to
mix states with an even number of photons to states with an
odd one [70]. The classical fluctuations induced by one-
photon losses bear analogy to those present in a system at
thermal equilibrium. Therefore, in the limit of small one-
photon loss rate γ ≪ J, and sufficiently close to the critical
valueGc, the system is expected to be in a QCR, in analogy
to the QCR occurring in systems at thermal equilibrium
[54,59,71]. In this regime, the losses cause the NESS to
become a statistical mixture of states, all characterized by
strong and long-range quantum correlation. This behavior
is illustrated in Fig. 1.
In order to study the emergence of a QCP in this system,

we determine the steady-state density matrix of the full
boson model described by the Lindblad Master equation,

Eq. (2), in the cases of 1D arrays and 2D lattices of different
sizes, assuming periodic boundary conditions. We have
posed dρ̂ss=dt ¼ 0 in Eq. (2) and solved the resulting
equation numerically. All cases studied here assume real
values for G, γ ¼ η and Δ ¼ −jJj. The numerical solution
of the steady state problem is obtained using the corner-
space renormalization method [72].
We start our discussion considering the case of a

2D lattice. In Fig. 2, we show the results for the von
Neumann entropy S ¼ −Trðρ̂ss log ρ̂ssÞ [panel 2(a)] and for
the steady-state expectation value of the parity Π ¼
Trðρ̂ss expðiπ

P
jâ

†
j âjÞÞ [panel 2(b)] as a function of G=γ

for different sizes of the lattices, having fixed U=γ ¼ 40
and J=γ ¼ 20. We notice that, in the two limiting regimes,
we recover the expected phases: at smallG, we find, for any
size of the lattice, a pure steady state with positive parity,
corresponding to the vacuum state. At large G, instead, the
expectation value of the parity vanishes, and the entropy
approaches the value S ¼ logð2Þ, indicating that the steady
state is a mixture of two equiprobable states with opposite
parity. To investigate the emergence of the critical behavior,
we study the scaling of the parity with the finite size L ¼ffiffiffiffi
N

p
of the simulated two-dimensional lattice, according to

the theory of Fisher and Barber [73]. In this analysis, we
use the critical exponents β ¼ 0.32642 and ν ¼ 0.62997,
respectively, related to the magnetization and the correla-
tion length for the quantum 2D transverse Ising model [74].
In the inset of Fig. 2(c), we show the rescaled parity ΠLβ=ν

as a function of G=γ. The emergence of a critical point at
Gc=γ ≃ 1.2 is indicated by the common crossing point of all
the rescaled curves corresponding to different values of L.
Moreover, when we plot the rescaled parity ΠLβ=ν as a
function of ðG −GcÞ=γL1=ν [main graph of Fig. 2(c)], the
data collapse on a single universal curve, indicating that
the phase transition belongs to the universality class of the

FIG. 1. A pictorial sketch of the phase diagram of the
quadratically driven dissipative Bose Hubbard model. For van-
ishing one-photon loss rate γ, when increasing the amplitude of
the two-photon driving field G, the system undergoes a quantum
phase transition. A quantum critical point (QCP) marks the
transition between a paramagnetic (PM) phase, where the NESS
in the thermodynamic limit has a definite parity, and a ferro-
magnetic (FM) phase, where the Z2 symmetry of the system is
spontaneously broken. For finite values of the loss rate γ, in the
vicinity of the QCP, a quantum critical regime (QCR) arises,
where classical fluctuations act directly on the quantum-critical
entangled state.

FIG. 2. Computed values of the von Neumann entropy S (a) and of the parity Π (b) as a function of G=γ for the NESS of 2D lattices of
different sizes. (c) Finite size scaling of the parity using the critical exponents of the quantum 2D transverse Ising model (β ¼ 0.32642
and ν ¼ 0.62997). Inset: rescaled parity plotted vs G=γ. Parameters: U=γ ¼ 40 and J=γ ¼ 20.
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quantum 2D transverse Ising model. This result is con-
sistent with the presence of long-range entanglement
among photons in spite of the nearest-neighbor interaction
and the local dissipations.
The behavior of the entropy in the critical region brings

insight into the role of classical fluctuations induced by the
losses. For the largest lattices studied, S is not monotonic
with G, displaying, instead, a maximum, whose value
scales as a power law of the number of sites N of the lattice
[maxðSÞ ∼ Nκ with a fitted value κ ¼ 0.29: see inset of
Fig. 2(a)]. The sublinear scaling of the entropy with the
number of sites is a signature of correlations (classical and/
or quantum) and, together with the emergence of a critical
behavior belonging to the universality class of the quantum
transverse Ising model, reveals the competing roles of
quantum and classical fluctuations in the many-body
system, thus, supporting the QCR picture [54].
To better characterize the effect of classical fluctuations,

we study the same two-dimensional lattice in a regime of
larger dissipation (U=γ ¼ 20 and J=γ ¼ 10). The results
are shown in Fig. 3. Panel 3(a) displays the entropy, whose
peak value still increases as a power law of N but with a
larger fitted exponent κ ¼ 0.44. The scaling analysis of the
parity with the critical exponents of the quantum 2D
transverse Ising model, displayed in Fig. 3(b), shows that,
for lattice sizes up to 6 × 6, the rescaled data forΠLβ=ν have
a common crossing point at the same value of Gc=γ ≃ 1.2
found for smaller dissipation. However, the curves for
ΠLβ=ν as a function of ðG −GcÞ=γL1=ν display a sizeable
departure from universality, particularly visible forG > Gc.
We notice that, for this set of parameters, the convergence
of the corner-space computed parity is extremely hard to
assess in the 8 × 8 lattice, contrary to the corresponding
entropy data.
A qualitatively similar behavior is observed when

simulating a 1D array of cavities. In Fig. 4, we present

the results obtained for the parameters U=γ ¼ 100 and
Δ=γ ¼ 50. In spite of the very small loss rate, the peak of
the entropy still grows sublinearly, but with a still larger
exponent, i.e., maxðSÞ ∼ Nκ with a fitted value κ ¼ 0.80.
We perform a finite-size scaling analysis of the parity using
the critical exponents of the quantum 1D transverse Ising
model β ¼ 0.125 and ν ¼ 1. As in the 2D case, at larger
loss rate, we find, in this case, a small departure from the
universal scaling of the quantum phase transition. The plot
ofΠLβ=ν as a function ofG shows a common crossing point
estimated atGc=γ ≃ 1.8 [see inset of Fig. 4(b)], the rescaled
plot of ΠLβ=ν as a function of ðG −GcÞ=γL1=ν does not
show a full collapse of the data at varying system sizes
[main panel of Fig. 4(b)].
The picture that can be drawn from this analysis is that

the driven-dissipative Bose-Hubbard model with two-
photon driving behaves as a quantum simulator of an
interacting spin model in the presence of a transverse field.
In the limit of vanishing loss rates, when varying the
driving field amplitude G across a critical value Gc, a
quantum phase transition occurs from a paramagnetic
phase to a ferromagnetic phase with broken Z2 symmetry.
The critical exponents extracted from the numerical data
correspond, indeed, to those of the quantum transverse
Ising model and, thus, differ substantially from mean-field
prediction, revealing the important role played by long-
range entanglement arising among photons. Losses into the
environment induce classical fluctuations that mimic those
of a system at thermal equilibrium. For the 2D lattice, at the
smallest value of γ that we have studied, the finite size of
the lattices that we have considered is responsible for the
suppression of excitations induced by classical fluctuations,
and the scaling properties essentially reproduce the uni-
versal scaling expected at zero temperature. For the 2D case
at the largest loss rate and for the 1D case considered, the
linear size of the system is large enough to enable classical

FIG. 3. (a) von Neumann entropy S computed as a function of
G=γ for the NESS of 2D lattices of different sizes. (b) Finite size
scaling analysis of the parity using the critical exponents of the
quantum 2D transverse Ising model (β ¼ 0.32642 and
ν ¼ 0.62997). Inset: rescaled parity plotted vs G=γ. Parameters:
U=γ ¼ 20 and J=γ ¼ 10.

FIG. 4. (a) von Neumann entropy S computed as a function of
G=γ for the NESS of 1D arrays of different lengths. (b) Finite size
scaling analysis of the parity using the critical exponents of the
quantum 1D transverse Ising model (β ¼ 0.125 and ν ¼ 1). Inset:
rescaled parity plotted vs G=γ. Parameters: U=γ ¼ 100 and
J=γ ¼ 50.
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fluctuations, and the scaling properties depart from the
universal behavior, as one would expect for a quantum
transverse Ising model at finite temperature. The distinctive
feature of the present system is the fact that a quantum
critical regime emerges for moderately small loss rates, that
are within reach, for example, in circuit QED platforms
[50]. In this limit, the system should display a quantum
critical regime, characterized by a universal behavior of
most dynamical properties, such as the excitation spectrum
and the equilibration dynamics.
With the experimental feasibility of nonlinear photonic

arrays [6,51,69,75–80], the present result opens up the
possibility for studying the quantum critical regime on a
highly controlled platform, where most dynamical, spec-
tral, and correlation properties are experimentally acces-
sible. At the same time, the present system is highly
versatile and could be generalized to the quantum simu-
lation of several quantum spin models. Here, we anticipate
that the study of the quadratically driven model with
hopping rate J < 0—an experimentally feasible regime
[81]—would enable the quantum simulation of antiferro-
magnetic spin models, possibly with frustrated lattice
geometries. An extension to an n-photon driving field
would, instead, introduce a Zn symmetry, which was
considered, recently, as a possible noise resilient quantum
code [82] and has been recently realized in a parametrically
driven superconducting resonator [83,84]. The Zn sym-
metry may open the way to the quantum simulation of spin
S > 1=2 models and of topological properties, as in the
Haldane S ¼ 1 spin chain [85]. Finally, a spatially non-
homogeneous driving would naturally enable the study of
many-body spin transport, while an engineered disorder
would make it possible to study many-body localization
and other properties of disordered interacting models.
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