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Quasicrystals are long-range ordered and yet nonperiodic. This interplay results in a wealth of intriguing
physical phenomena, such as the inheritance of topological properties from higher dimensions, and the
presence of nontrivial structure on all scales. Here, we report on the first experimental demonstration of an
eightfold rotationally symmetric optical lattice, realizing a two-dimensional quasicrystalline potential for
ultracold atoms. Using matter-wave diffraction we observe the self-similarity of this quasicrystalline
structure, in close analogy to the very first discovery of quasicrystals using electron diffraction. The
diffraction dynamics on short timescales constitutes a continuous-time quantum walk on a homogeneous
four-dimensional tight-binding lattice. These measurements pave the way for quantum simulations in
fractal structures and higher dimensions.
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Quasicrystals exhibit long-range order without being
periodic [1–6]. Their long-range order manifests itself in
sharp diffraction peaks, exactly as in their periodic counter-
parts. However, diffraction patterns from quasicrystals
often reveal rotational symmetries, most notably fivefold,
eightfold, and tenfold, that are incompatible with transla-
tional symmetry. Therefore, it immediately follows that
long-range order in quasicrystals cannot originate from a
periodic arrangement of unit cells but requires a different
paradigm. Quasicrystalline order naturally arises from an
incommensurate projection of a higher-dimensional peri-
odic lattice and thereby enables investigation of physics of
higher dimensions, in particular in the context of topology
[7–11]. For instance, one-dimensional (1D) quasiperiodic
models, such as the Fibonacci chain and the Aubry-
Andre model, are closely connected to the celebrated two-
dimensional (2D) Harper-Hofstadter model, and inherit
their topologically protected edge states [9,11]. An alter-
native approach to constructing quasicrystals was described
by Penrose [12] who discovered a set of tiles and associated
matching rules that ensure aperiodic long-range order when
tiling a plane [5]. The resulting fivefold symmetric Penrose
tiling and the closely related eightfold symmetric octagonal
tiling [3,5,13,14] (also known as Ammann-Beenker tiling)
have become paradigms of 2D quasicrystals. In addition to
their disallowed rotational symmetries, these tilings have
the remarkable feature of being self-similar in both real and
reciprocal space [2,5]. Self-similarity upon scaling in
length by a certain factor (the silver mean 1þ ffiffiffi

2
p

in the
case of the octagonal tiling) implies that nontrivial structure
is present on arbitrarily large scales. Correspondingly,
diffraction patterns from quasicrystals display sharp peaks
at arbitrarily small momenta. Important manifestations of
this nontrivial order on all length scales include the absence
of universal power-law scaling near criticality [15] and its

application to quantum complexity [16]. Moreover, quasi-
crystals exhibit fascinating phenomena such as phasonic
degrees of freedom [6,17,18]. To date, quasicrystals have
been extensively studied in condensed matter and material
science [1,3,4,6,17], in photonic structures [9,13,18–20],
using laser-cooled atoms in the dissipative regime [21,22],
and very recently in twisted bilayer graphene [23].
Quasicrystalline order can even appear spontaneously in
dipolar cold-atom systems [24].
In this work, we realize a quasicrystalline potential for

ultracold atoms based on an eightfold rotationally sym-
metric optical lattice, thereby establishing a new exper-
imental platform for the study of quasicrystals. Optical
lattices, i.e., standing waves of light, have become a
cornerstone in experimental research on quantum many-
body physics [25]. They offer an ideal environment for
examining quasicrystals since optical potentials are free of
defects which greatly complicate measurements on quasi-
crystalline solids [6]. In addition, we are able to directly
impose “forbidden” rotational symmetries, thereby circum-
venting the elaborate synthesis of stable single crystals
[26]. So far, quasiperiodic optical lattices have been used as
a proxy for disorder in ultracold quantum gases [27–31],
but the intriguing properties of quasicrystalline order have
remained unexplored. Here, we use a Bose-Einstein con-
densate of 39K atoms to probe a quasicrystalline optical
lattice in a matter-wave diffraction experiment, namely
Kapitza-Dirac scattering [32]. This allows us to observe a
self-similar diffraction pattern, similar to those obtained
by Shechtman et al. using electron diffraction [1] in
their original discovery of quasicrystals. Additionally, we
investigate the diffraction dynamics which at short times
constitutes a continuous-time quantum walk on a four-
dimensional (4D) homogeneous tight-binding lattice.
Confined synthetic dimensions, which can be created by
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employing the discrete hyperfine states of atoms, already
play an important role in quantum simulation [33–35]. Our
measurements demonstrate the potential of quasicrystalline
optical lattices to be used for the simulation of extended
higher dimensions.
We create the 2D quasicrystalline potential using a

planar arrangement of four mutually incoherent 1D optical
lattices, each formed by retroreflecting a single-frequency
laser beam, as shown schematically in Fig. 1(a). The angle
between two neighboring lattice axes is 45(1)°, similar to
the setup proposed in Ref. [14] (see also Refs. [36,37]),
thereby imposing a global eightfold rotational symmetry in
close analogy to the octagonal tiling. The right inset of
Fig. 1(b) shows the reciprocal lattice vectors Ĝ1, Ĝ2, Ĝ3,
and Ĝ4 of the four 1D lattices. In contrast to a periodic
lattice the combination of several Ĝi here may give rise to
new, smaller momentum scales, as shown the left inset of
Fig. 1(b); for example, the combination −Ĝ1 þ Ĝ3 − Ĝ4

results in a new k vector (red arrow) that is shorter than the
original Ĝ1 by a factor of 1þ ffiffiffi

2
p

(the silver mean). This
process can be repeated ad infinitum and results in a self-
similar fractal structure containing arbitrarily small k

vectors, giving rise to the sequence of octagons in Fig. 1(b).
Consequently, it is impossible to assign a maximum
characteristic length to this quasicrystal, heralding the
presence of structure on all scales. The set of momenta
that are reachable from k0 ¼ ð0; 0Þ by combining the Ĝi is
dense in the kx, ky plane and any element G of this set is
determined by four integers ði; j; l; nÞ ∈ Z4 as

G ¼ iĜ1 þ jĜ2 þ lĜ3 þ nĜ4: ð1Þ

While physical momentum remains two dimensional, all
four integers are nonetheless required to describe a givenG,
since cosð45°Þ ¼ sinð45°Þ ¼ 1=

ffiffiffi
2

p
is irrational and hence

incommensurable with unity. In fact, Fig. 1(b) can be
viewed as an incommensurate projection of a 4D simple-
cubic “parent” lattice to the 2D plane, similar to the “cut-
and-project” scheme for constructing the octagonal tiling,
starting fromZ4 [5]. By using fewer than four lattice beams
we can control the dimensionality of the parent lattice and
reduce Z4 to ZD with D ∈ f1; 2; 3; 4g.
The experimental sequence starts with the preparation of

an almost pure Bose-Einstein condensate of 39K atoms in a

(a) (b)

(c)

FIG. 1. (a) Schematic of the eightfold optical lattice formed by superimposing four independent 1D lattices. (b) Fractal momentum
space structure. The first 15 orders of possible diffraction peaks are shown. They are constructed by iteratively adding or subtracting one
of the four reciprocal lattice vectors Ĝi (inset on the right) to the peaks in the previous order, starting with k ¼ ð0; 0Þ. This results in a
fractal structure, whose self-similarity is illustrated by a sequence of octagons, which are each scaled by the silver mean 1þ ffiffiffi

2
p

relative
to the next. The left inset shows one inflation step (see text). (c) Raw time-of-flight images resulting from four different lattice
configurations at fixed lattice pulse duration (t ¼ 3.5 μs). Using just one of the lattice axes results in a regular 1D simple-cubic lattice
characterized by Ĝ1; adding the perpendicular lattice creates a regular 2D square lattice with Ĝ1 and Ĝ2. By adding the first diagonal
lattice we obtain a regular array of quasiperiodic 1D lattices. These are characterized by a dense set of momentum states along Ĝ3

whereas the direction perpendicular to Ĝ3 remains periodic (labeled 3D). Finally, using all four axes we create the 2D quasicrystal
(labeled 4D) whose self-similarity is illustrated by the octagons.
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crossed-beam dipole trap [38]. Using the Feshbach reso-
nance centered at 402.70(3) G [45] we tune the contact
interaction to zero just before we release the condensate
from the trap. Then, we immediately expose it to the optical
lattice for a rectangular pulse of duration t. During this
pulse, atoms in the condensate can undergo several
stimulated two-photon scattering events (Kapitza-Dirac
scattering [32]), which scatter photons from one lattice
beam into its counterpropagating partner and transfer
quantized momenta of �2ℏklat, where ℏklat is the momen-
tum of a lattice photon and jĜij ¼ 2klat. The lattice wave-
length λlat ¼ 2π=klat ¼ 726 nm is far detuned from the D
lines in 39K, ensuring that single-photon processes are
completely suppressed. Throughout this work, the lattice
depth of each individual axis is 14.6ð2ÞErec, with Erec ¼
h2=ð2mλ2latÞ denoting the recoil energy, m being the atomic
mass and h being Planck’s constant. Finally, we record the
momentum distribution of the atomic cloud by taking an
absorption image after 33 ms time of flight [38].
In a first experiment we fix the lattice pulse duration at

t ¼ 3.5 μs and vary the number of lattice beams, as shown
in Fig. 1(c). Starting from the single-axis (1D) case, we
subsequently add lattice axes, finally completing the eight-
fold symmetric case (4D), representing the quasicrystalline
structure with its striking self-similarity under (1þ ffiffiffi

2
p

)
scaling.
The diffraction dynamics offers additional signatures of

the fractal nature of the eightfold optical lattice: during the
lattice pulse the condensate explores reciprocal space in
discrete steps of �Ĝi, leading to profoundly distinct
behaviors in the periodic (2D) and in the quasicrystalline
case (4D). Figure 2 shows absorption images for four
different values of pulse duration t in the latter configu-
ration, illustrating the occupation of more and more closely
spaced momenta. Using individual fits [38] we extract the
number of atoms in every k state up to the seventh
diffraction order, i.e., those momenta reachable by seven
or fewer two-photon scattering events. In all cases, high

momentum states are inaccessible, as the corresponding
two-photon transitions become off-resonant due to kinetic
energy. Therefore, in the 2D simple-cubic lattice (Fig. 3 on
the left) the total number of accessible states is limited and
the dynamics is oscillatory, reminiscent of a simple
harmonic oscillator. In the quasicrystalline case (4D, right
of Fig. 3), in contrast, the diffraction dynamics is non-
oscillatory: due to the fractal momentum space structure,

FIG. 2. Dynamics of Kapitza-Dirac diffraction in the quasicrystalline optical lattice. The figure shows raw absorption images for four
different lattice pulse durations. After 1 μs, only the first diffraction order has been populated, while longer pulses lead to populations in
successively higher orders as the atoms perform a quantum walk on the fractal momentum structure. Black octagons with a circumradius
of jĜij ¼ 2klat illustrate the fundamental momentum scale due to two-photon processes.

FIG. 3. Kapitza-Dirac diffraction dynamics in a periodic (2D)
and quasicrystalline (4D) lattice. The normalized populations
(colored dots) of the condensate (0th order) and the first seven
diffraction orders are plotted against pulse duration, together with
the numerical solution to the Schrödinger equation (lines). The
periodic case (2D) is oscillatory as kinetic energy limits the
accessible momenta. In contrast, the quasicrystalline lattice (4D)
contains a fractal set of k states, cf. Fig. 1(b), enabling the
population of higher and higher orders without kinetic energy
penalty. Correspondingly, the expansion carries on linearly,
indicated by the light blue “wave front” as a guide to the eye.
Error bars denote the standard deviations from five realizations of
the experiment, and are typically smaller than symbol size.

PHYSICAL REVIEW LETTERS 122, 110404 (2019)

110404-3



the atoms can access states in ever higher diffraction orders
that correspond to ever smaller momenta. As a consequence,
large parts of the population propagate ballistically to
progressively higher orders, as illustrated by the light blue
“light cone.”Our data agree excellentlywith exact numerical
solutions (lines in Fig. 3) of the single-particle time-
dependent Schrödinger equation in momentum basis [38].
In the regime of short pulses, the Fourier limit ensures

that kinetic energy can be neglected for all dimensions and
the discrete momentum space structure can be seen as a
homogeneous tight-binding lattice [46,47]. A hopping
event in this effective lattice corresponds to a two-photon
scattering event and connects momenta differing by �ℏĜi.
In this picture, the diffraction dynamics is equivalent to the
expansion of initially localized particles in this synthetic
lattice and gives rise to a continuous-time quantum walk
with its characteristic light-cone-like propagation [48–50].
For a hypercubic lattice inD dimensions, the separability of
the tight-binding dispersion relation leads to an average
group velocity proportional to

ffiffiffiffi
D

p
[38]. Because of the

correspondence between the number of lattice beams and
the dimension of the resulting tight-binding Hamiltonian,
we are able to extend the dynamics to up to four
dimensions. Using the appropriate form of Eq. (1) in
ZD, we extract the effective root-mean-square momentum

in D dimensions, e.g.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hi2 þ j2i

p
in the 2D case andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hi2 þ j2 þ l2 þ n2i
p

in the 4D case, from the individual
populations of all diffraction peaks, and find excellent
agreement between the measurements and the analytic
result vp ∝

ffiffiffiffi
D

p
[38], as shown in Fig. 4. The departure

from linear behavior at longer times is due to kinetic energy
and is captured well by the exact numerical solution to the
Schrödinger equation (solid lines in Fig. 4). The extent of
the linear region is controlled by the lattice depth. For even
longer times, kinetic energy enforces fundamentally differ-
ent behaviors for periodic and quasicrystalline lattices, as
shown in Fig. 3 (and in Fig. S3 in the Supplemental
Material [38]).
In conclusion, we have realized a quasicrystalline poten-

tial for ultracold atoms, which can facilitate the creation of
ever more complex many-body systems [16] and novel
phases [51]. By observing the occupation of successively
closer-spaced momenta, we were able to confirm its self-
similar fractal structure in momentum space. In addition, we
experimentally verified the fundamentally different diffrac-
tion dynamics between periodic and quasicrystalline poten-
tials, in excellent agreement with theory. Finally, we
demonstrated the ability to simulate tight-binding models
in one to four dimensions, by observing the light-cone-like
spreading of particles in reciprocal space. On the one hand,
these measurements pave the way for more elaborate
quantum simulations in four dimensions, including topo-
logical effects and charge pumps [10,52]. On the other hand,
quasicrystalline potentials enable experimental studies of
novel quantum phenomena that have been predicted for
quasicrystals, such as non-power-law criticality [15], topo-
logical edge states [7,11,53], and spiral holonomies [54].
Finally, our system will provide unprecedented access to
transport and localization properties of quasicrystals, thereby
addressing fundamental questions about the relation between
quasiperiodic order and randomness [55] and extending
studies of many-body localization and Bose glasses to two
dimensions [29,30,56,57].
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