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We introduce an experimental test for ruling out classical explanations for the statistics obtained when
measuring arbitrary observables at arbitrary times using individual detectors. This test requires some trust
in the measurements, represented by a few natural assumptions on the detectors. In quantum theory, the
considered scenarios are well captured by von Neumann measurements. These can be described naturally
in terms of the Keldysh quasiprobability distribution (KQPD), and the imprecision and backaction exerted
by the measurement apparatus. We find that classical descriptions can be ruled out from measured data if
and only if the KQPD exhibits negative values. We provide examples based on simulated data, considering
the influence of a finite amount of statistics. In addition to providing an experimental tool for certifying
nonclassicality, our results bestow an operational meaning upon the nonclassical nature of negative
quasiprobability distributions such as the Wigner function and the full counting statistics.
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Introduction.—The theory of quantum mechanics con-
tains ingredients that are absent in classical theories, such
as entanglement, wave-function collapse, and superposi-
tion of arbitrary states [1–3]. In some scenarios, these
ingredients are beneficial (e.g., quantum information [4]),
while in other scenarios, they provide limitations (e.g.,
quantum noise in measurement and amplification [5]).
The realm of possibilities that are enabled or prohibited
by quantum mechanics is a highly non-trivial subject of
current research.
At the heart of this problem lies the question: “which

observations cannot be explained by classical theories?” A
strong result in this direction is provided by Bell inequal-
ities [6]. With the help of such inequalities, observed data
alone can rule out any theory that fulfills a natural definition
of locality [7]. While this is an extremely powerful result,
locality is a rather specific requirement and does not
encompass all classical theories [8].
Another well-established approach for testing for non-

classicality is given by the Glauber-Sudarshan P function
in quantum optics [9,10]. If a state is described by a P
function that cannot be interpreted as a probability dis-
tribution, then some measurable intensity correlators result-
ing from this state cannot be described by classical
electrodynamics [11,12]. In contrast to Bell inequalities,
the measurement device thus has to be trusted to produce
intensity correlators of light.
Arguably the most striking difference to classical theo-

ries is the fact that observables cannot be described using
positive probability distributions in quantum mechanics.
Leggett-Garg inequalities [13] provide a test for non-
classicality based on this criterion. However, an additional
assumption of noninvasive measurability which is not
generally justified complicates the conclusions [14].

In this Letter, we provide a test for nonclassicality that
rules out any description based on positive probabilities
under a few realistic assumptions on the measurement
apparatus. To this end, we consider scenarios where
observables are measured using individual detectors, see
Fig. 1. In quantum theory, such scenarios are well described
by von Neumann type measurements [15–18], where
observables of interest are coupled to detectors that are
subsequently measured projectively. The probability dis-
tribution describing the measurement outcomes have a
natural description in terms of a quasiprobability distribu-
tion that we abbreviate with KQPD due to its reminiscence
of the Keldysh path-integral formulation [19,20]. The
KQPD depends on the observables of interest and can

(a) (b)

FIG. 1. (a) Sketch of the setup. Two observables are measured
by detectors ðDjÞ coupled to the system ðSÞ. The detectors come
with a knob ðχjÞ and disturb the system ðγjÞ. (b) Illustration of
von Neumann measurements. Detectors are quantum mechanical
systems that couple to the system of interest at times tj via the
Hamiltonian Ĥj. The interaction shifts the probability distribution
ρj of the detectors by an amount depending on the system state ρ̂.
After the interaction, a projective position measurement is
performed on the detectors resulting in the outcome Āj.
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reduce to the Wigner function [21] or the full counting
statistics [22]. Other applications include quantum thermo-
dynamics [23–28], quantum optics [29], generalized
Wigner functions [30], weak values [19] (see also
Refs. [31–33]), and nonequilibrium phenomena in quantum
systems [20]. Importantly, the KQPD can become negative,
indicating nonclassical behavior [18,29,34–39]. Here we
put this nonclassical feature on a firmer footing by taking
an operational approach. To this end, we put forward a
classical model for measurements based on individual
detectors. This model is based on a few natural assumptions
on the detectors and results in an experimentally accessible
inequality. We show that within quantum theory, negativity
in the KQPD is a necessary and sufficient condition to
violate the inequality, ruling out a classical description.
Just like negativity in the P function rules out an explan-
ation by classical electrodynamics (as long as the detectors
can be trusted to produce intensity correlators), negativity
in the KQPD rules out an explanation based on positive
probabilities, as long as the measurement apparatus can be
trusted to fulfill the assumptions specified below.
In contrast to Leggett-Garg inequalities, noninvasiveness

of the measurement is not required. The proposed
experimental test of nonclassical behavior is therefore
not subject to a clumsiness [14] or a finite precision
loophole [40,41]. The model is not necessarily local or
noncontextual [42–44].
Before we introduce the classical model, we provide the

quantum mechanical (QM) description of the scenario
under investigation, sketched in Fig. 1. While we assume
this to be the correct description, we stress that our test for
nonclassicality does not rely on the QM model.
The KQPD.—The QM model relies on the KQPD which

is discussed in detail in Ref. [19]. It encodes the joint
fluctuations of multiple observables of interest. For sim-
plicity, we consider the situation where we are interested in
two observables Â1 and Â2 at times t1 and t2, respectively.
The generalization to more observables is straightforward.
Let us further consider the situation where t2 either comes
immediately after t1 (subsequent measurements) or where
t1 ¼ t2 (simultaneous measurements). The KQPD is then
defined as (ℏ ¼ 1)

PðAjγÞ ¼
Z

dλ
ð2πÞ2 e

iλ·ATrfQ̂ðλ; γÞρ̂Q̂†ð−λ; γÞg; ð1Þ

where Q̂¼ expf−i½ðλ2=2Þþγ2�Â2gexpf−i½ðλ1=2Þþγ1�Â1g
for subsequent and Q̂ ¼ exp½−iPj¼1;2 ðλj=2þ γjÞÂj� for
simultaneous measurements. The state before the measure-
ment is denoted by ρ̂. We grouped the observables into a
vector A ¼ ðA1; A2Þ and similarly for λ and γ. As shown
below, the variables γj are necessary to take into account the
backaction exerted by the measurement and can be seen as
random variables determined by the detectors. A physical

motivation for the definition in Eq. (1) is provided below
by Eq. (3).
If ½Â1; Â2� ≠ 0, the measurement of Â1 may influence

the measurement of Â2 and a description of the system in
terms of predetermined values of A1 and A2 is not generally
possible. In this case, the KQPD may become negative. It
has been shown that such negativity requires the system to
be in a superposition of states that correspond to different
values for the observable A1 [39]. Negativity in the KQPD
can thus be seen as an indicator for nonclassical behavior.
However, in an experiment, the negativity of the KQPD is
masked by measurement imprecision and backaction,
rendering the measured probability distribution strictly
non-negative. The inequality that we introduce below relies
on a way to unmask the KQPD experimentally.
The QM model.—We consider two detectors, one for

each observable to be measured. The detectors can
be described by canonically conjugate observables r̂j
and π̂j, and they are coupled to the system through the
Hamiltonian [15]

Ĥj ¼ δðt − tjÞχjÂjπ̂j; ð2Þ

where j ¼ 1, 2, and χj denotes the measurement strength.
We assume that the time evolution induced by any
Hamiltonian other than Eq. (2) can be neglected during
(and between) the measurements, noting that it is straight-
forward to include time evolution between the measure-
ments (for an investigation on detector memory effects,
see Ref. [45]). Equation (2) induces a displacement in the
detector coordinates r̂j which depends on the state of the
system. After the interaction, a projective measurement of
the detectors is performed to complete the measurement
of the system observables Âj. The measured distribution
reads [19] (see also Refs. [46,47])

PðAjχ Þ ¼
Z

dA0dγPðA0jγÞ
Y
j¼1;2

WjðĀj − Ā0
j; γ̄jÞ; ð3Þ

where Wjðr; πÞ denotes the Wigner function of detector j
and we introduced Āj ¼ χjAj and γ̄j ¼ γj=χj. This equa-
tion has a simple interpretation, motivating the definition
in Eq. (1). The KQPD describes the intrinsic fluctuations
of the observables, containing all the information of the
system. These fluctuations are distorted by the measure-
ment process, giving rise to the convolution with the
Wigner functions of the detectors. The uncertainty in the
position coordinates induces a fuzziness in the measure-
ment (measurement imprecision) and the uncertainty in the
momentum coordinates introduces a random kick in the
measured observable through Eq. (2) (measurement back-
action). Because of the Heisenberg uncertainty relation,
there exists a trade-off between imprecision and backaction
[5], which ensures that the measured distribution is always
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positive, even when the KQPD exhibits negativity. For an
investigation of the classical limit of von Neumann type
measurements, see Ref. [48].
The classical model.—We now introduce a classical

hidden-variable model that describes the situation sketched
in Fig. 1(a). To this end, we assume that the system is
described by a probability distribution SðAjγÞ. This dis-
tribution encodes the (hidden) values of the observables (A)
and takes into account that the presence of the detectors
may modify the system behavior ðγÞ. The measured
distribution can then be written in the completely general
form

PclðAjχ Þ ¼
Z

dA0dγMðA;A0; γjχ ÞSðA0jγÞ; ð4Þ

where χ describes the (changeable) detector settings. The
functionM describes the effect of the detectors. We say that
an observed probability distribution has a classical explan-
ation if it can be described by the right-hand side of Eq. (4)
with positive S and M.
Equation (4) is sufficiently general that it can essentially

describe any observations. To rule out a classical explan-
ation, we place some trust in the detectors and make the
following assumptions:
1. Uncorrelated detectors:

MðA;A0; γjχ Þ ¼
Y
j

MjðAj; A0
j; γjjχjÞ: ð5Þ

2. Uncorrelated imprecision and backaction:

MjðAj; A0
j; γjjχjÞ ¼ pjðγjjχjÞDjðAj; A0

jjχjÞ: ð6Þ

3. Backaction only affects the other observable:

Z
dAkSðAjγj; γk ¼ 0Þ≡ SðAjjγjÞ ¼ SðAjÞ: ð7Þ

4. Translational invariance:

DjðAj; A0
jjχjÞ ¼ DjðAj − A0

jjχjÞ: ð8Þ

5. Detectors can be detached:

lim
χj→0

pjðγjjχjÞDjðAj − A0
jjχjÞ ¼ δðγjÞUðAjÞ: ð9Þ

In the spirit of the considered scenario, the first assumption
allows us to treat the detectors as individual objects (note
that this assumption is also present in the Bell scenario).
Assumptions 2 and 3 ensure that the backaction of a
detector does not interfere with its own measurement; i.e.,
a detector’s output is independent of its backaction on
the system. In Eq. (7), we introduced the distribution
relevant for measuring a single variable SðAjÞ, which is

assumed to be independent of the backaction of its own
detector. In assumption 5, U denotes the uniform distri-
bution and we defined γj ¼ 0 to denote the absence of any
backaction of detector j. We note that our assumptions only
include the effect of the detectors. On a qualitative level,
one can thus replace our assumptions with the notion of
having control over measurements of single observables
and preventing any cross-talk between the detectors.
Certifying nonclassicality.—We denote by PðAjjχjÞ the

distribution that describes a measurement of a single
observable. We further denote the Fourier transform of
any distribution with a tilde P̃ðλÞ ¼ R

dA expð−iλAÞPðAÞ.
We then consider the quantity

K ¼ 1

ð2πÞ2
Z

dλeiλ·AP̃ðλjχ Þ
Y
j¼1;2

P̃ðλjjχ0jÞ
P̃ðλjjχjÞ

; ð10Þ

where we note that the right-hand side only contains
Fourier transforms of measurable probability distributions.
If the measurement is described by our classical model, we
can write this quantity as [49]

Kcl ¼
Z

dA0dγSðA0jγÞ
Y
j¼1;2

pjðγjjχjÞDjðAj − A0
jjχ0jÞ: ð11Þ

This equation is very similar to Eq. (4) (under our
assumptions) with the only difference that χj is replaced
by χ0j in the measurement imprecision term Dj. Within our
assumptions, the measurement imprecision of the detectors
can be corrected for. We end up with a distribution where
the backaction is determined by χj and the imprecision
by χ0j. In our classical model, this still results in a positive
distribution

Kcl ≥ 0: ð12Þ

Any violation of this inequality implies that the observed
data cannot be explained by Eq. (4) with positive S and M
that satisfy the five assumptions. Trusting the detectors
(i.e., the assumptions) then allows us to conclude that no
explanation in terms of positive probabilities is possible.
The assumptions thus introduce loopholes since a violation
of Eq. (12) could in principle result from their breakdown.
In quantum mechanics, the delicate interplay between

backaction and imprecision is what masks the negativity of
the KQPD. This may result in a violation of the inequality.
Using detectors with positive Wigner functions that fac-
torize in a position and a momentum part ensures that our
assumptions on the detectors are satisfied. The quantity K
is then given by an expression analogous to Eq. (11), with S
replaced by the KQPD P. This can be seen by plugging
Eq. (3), and a similar expression for single observables, into
Eq. (10). A positive KQPD then immediately ensures
K≥0. In the limit where χj → 0 and χ0j → ∞, we find
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K → P. Whenever the KQPD exhibits negativity, we
can thus find K < 0, violating the inequality in Eq. (12).
Since the assumptions on the detectors are met, this implies
that the measured data cannot be explained by positive
probability distributions. Negativity in the KQPD is there-
fore a necessary and sufficient condition for certifying
nonclassicality.
Examples.—We now illustrate how our classical model

can be ruled out from experimental (in our case, simulated)
data by violating the inequality in Eq. (12). We consider
two examples: The simultaneous measurement of position
and momentum, and two subsequent, noncommuting
Stern-Gerlach type spin measurements. For both examples,
we consider identical detectors that are described by the
Wigner function (throughout, we consider dimensionless
units for position and momentum)

Wjðrj; pjÞ ¼
1

π
e−ðr

2
jþp2

j Þ=π; ð13Þ

corresponding to unsqueezed Gaussian states of minimal
uncertainty. As demanded by assumption 2, they factorize
into distributions for position (imprecision) and momentum
(backaction).
We first consider a simultaneous measurement of posi-

tion and momentum on a single-photon Fock state
described by the Wigner function

Wðx; pÞ ¼ 1

π
½2ðx2 þ p2Þ − 1�e−ðx2þp2Þ: ð14Þ

In this case, our quantum mechanical model reduces to the
Arthurs-Kelly model [50]. We note that such a measure-
ment can be implemented by heterodyne detection [51],
see Ref. [52] for an experimental realization. As discussed
in detail in Ref. [19], the KQPD for the simultaneous
position and momentum measurement is given by
Wðx − γp=2; pþ γx=2Þ. Choosing equal measurement

strengths χx ¼ χp ¼ χ and χ0x ¼ χ0p ¼ χ0 we then find
(see Supplemental Material for details [49])

K¼ 1

πð1þgÞ3e
−½ðx2þp2Þ=ð1þgÞ�½2ðx2þp2Þ−1þg2�; ð15Þ

where g ¼ ðχ=2Þ2 þ 1=ðχ0Þ2. We note that in the limit
χ → 0 and χ0 → ∞, we have g → 0 and Eq. (15) reduces to
Eq. (14). As long as g < 1, we find K < 0 at the origin, see
Fig. 2(a).
Equation (15) implies that the smaller χ, the stronger the

negativity in the measurable quantity K. Weaker measure-
ments thus always seem to be preferable. This is only true
under the assumption that K can be estimated precisely.
Strictly speaking, this requires an infinite amount of data.
For a finite and fixed number of measurements, we will find
a trade-off between having large negative values in K
(requiring small χ) and being able to reliably estimate K
(requiring large χ). To estimate K, we consider an experi-
ment with N measurements resulting in outcomes xj. We
define the empirical characteristic function [53]

Yλ ¼
1

N

XN
j¼1

e−iλxj ; ð16Þ

which provides an unbiased estimator of the characteristic
function (i.e., the Fourier transform of the probability
distribution). We note that it is imprecise for large values
of λ, where the characteristic function is a small number.
For K, we introduce the estimator

Kest ¼
�R λc

−λc
dλ

ð2πÞ2 e
iλ·AYλ

Yλx
0

Yλx

Yλp
0

Yλp
for jYλx=p j > co;

0 otherwise;
ð17Þ

where λ · A ¼ λxxþ λpp. Here the different empirical
characteristic functions are labeled by λ for the joint
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FIG. 2. Certifying nonclassicality. (a) Simultaneous measurement of both quadratures in a single-mode Fock state containing one
photon. (b) Two subsequent spin measurements in different directions on a spin one-half particle. The large panels show K for values A
that maximize the negativity [x ¼ 0, p ¼ 0 for (a), σ1 ¼ 0, σ2 ¼ −1 for (b)]. The solid line corresponds to the exact value of K
[Eq. (10)], the triangles to the estimate Kest based on numerical simulations [Eq. (17)]. The side panels show the full estimate of K for a
single data point. In (a), the small side-panel shows the exact distribution K. In (b), the dashed lines correspond to the exact K. As the
measurement strength χ increases, the estimate becomes more reliable but the backaction decreases the negativity in K. The simulations
are based on 15 000 individual measurements of the observables and 30 000 joint measurements. Other parameters: (a) χ0 ¼ 5,
co ¼ 0.011, λc ¼ 10. (b) χ0 ¼ 3, co ¼ 0.01, λc ¼ 12.
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measurement and by a prime for the measurements with
strength χ0. Two empirical cutoffs increase the stability of
the estimator. The first, co, ensures that values of λ where
we divide by a very small number are not taken into
account. The second, λc, allows for integrating over a finite
domain. The estimator in Eq. (17) is illustrated in Fig. 2(a)
for simulated data. For large values of χ, it is both accurate
and precise. As χ becomes smaller, the spread of the
estimates increases (the precision is reduced). Eventually,
the cutoff co prevents an accurate estimation because the
true characteristic function becomes very small for almost
all values of λx=p. As expected, we find a trade-off between
large χ, where the negativity in K is not very pronounced,
and small χ, where it is hard to estimate K.
Our second example is provided by subsequent, non-

commuting measurements on a two-level system (for a
recent experimental implementation of noncommuting spin
measurements, see Ref. [54], for a detailed discussion
on simultaneous spin measurements, see Ref. [55]). We
consider the system to be in a pure state jþi, which is an
eigenstate of the Pauli matrix σ̂x. We then make a
measurement of σ̂z with strength χ1 ¼ χ, followed by a
projective measurement of σ̂x. The KQPD for this system is
discussed in Ref. [19] and given in the Supplemental
Material [49]. Because it is unavoidable that the first
measurement influences the second one, the KQPD exhib-
its negativity. Since the second measurement is projective,
we only correct for the measurement imprecision of the
first measurement, choosing χ2 ¼ χ02 → ∞ in Eq. (10).
All distributions can then be given as densities in the
continuous variable σ1 and probabilities in the discrete
variable σ2 ¼ �1. Certifying nonclassicality of this
system is illustrated in Fig. 2(b), where we show both
K as well as Kest. We find the same qualitative results as
for the simultaneous position and momentum measure-
ment. The weaker the first measurement, the more
pronounced the negativity but the less reliable is the
estimate Kest. Detailed calculations can be found in the
Supplemental Material [49].
Conclusions.—We introduced a classical model for

measurements that use individual detectors for different
observables. Under five natural assumptions, we find the
inequality K ≥ 0. Any violation of this inequality implies
that either no description in terms of positive probabilities
is possible, or one of the assumptions on the detectors is not
met. In scenarios which are well described by quantum
mechanical von Neumann measurements, we find that K
can become negative if and only if the KQPD exhibits
negative values. In this case, K provides a way of
approximating the KQPD from measurable probability
distributions. This is possible because measurement impre-
cision is a property of the detector alone and can thus be
inferred and corrected for. In weak measurements, where
backaction becomes small, correcting for the measurement
imprecision “unmasks” the KQPD, exposing its negativity.

Our classical model is appropriate whenever individual
detectors are used to measure different observables. The
introduced operational procedure for certifying nonclassi-
cality is thus of broad experimental relevance and it puts the
nonclassical nature of the negative values in the KQPD on a
firmer footing.
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