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Permeability is one of the most fundamental transport properties in soft matter physics, material
engineering, and nanofluidics. Here, we report by means of Langevin simulations of ideal penetrants in a
nanoscale membrane made of a fixed lattice of attractive interaction sites, how the permeability can be
massively tuned, even minimized or maximized, by tailoring the potential energy landscape for the
diffusing penetrants, depending on the membrane attraction, topology, and density. Supported by limiting
scaling theories we demonstrate that the observed nonmonotonic behavior and the occurrence of extreme
values of the permeability is far from trivial and triggered by a strong anticorrelation and substantial (orders
of magnitude) cancellation between penetrant partitioning and diffusivity, especially within dense and
highly attractive membranes.
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Permeability defines the ability of penetrating molecules
(e.g., gas, ligands, reactants, etc.) to collectively permeate
and flow through a given medium under the action of an
external field or chemical gradient. It is thus without
doubt one of the most fundamental transport descriptors
employed in the physical sciences andmaterial engineering.
In the standard “solution-diffusion” picture for dense
membranes it is commonly defined on the linear response
level by [1–9]

P ¼ KDin; ð1Þ
whereK ¼ cin=c0 is the equilibrium partitioning defined as
the ratio of number densities of the penetrants inside and
outside the medium, and Din is the diffusion coefficient of
those inside. The optimization of permeability, especially
for being highly selective among different penetrants, has
been a grand challenge in material design over the last
decades [5,9,10]. Prominent applications revolve around gas
separation or recovery [2,5,9,11–13], desalination and
nanofiltration (“molecular sieving”) [14–16], medical treat-
ments by dialysis or selective drug transport [17,18], or
hydrogel-based soft sensors or nanoreactors [19–22]. The
membrane materials range from solid nanoporous carbon or
silica to metal organic frameworks to soft polymer matrices,
for all of which the topology and chemistry can be well
controlled and fine-tuned nowadays.
Theoretical attempts to model permeability have started

mostly with simple “free volume” or “obstruction” theories
for both partitioning and diffusion [1–4,23–26]. It has turned
out, particularly with the help of computer simulations, that
the details are much more complex due to the various

specific molecular interactions and topologies inside the
membranes: on one hand, the partitioning, that is, “solva-
tion” of molecular penetrants in the dense media in general
results from a competition between various, e.g., steric,
solvophobic, dispersion, and electrostatic potentials
[11–13,27–32]. It was shown recently that this competition
can lead to a maximization of partitioning of penetrants in
polymer membranes tuned by volume fraction [33]. On the
other hand, diffusion in dense membranes is highly non-
viscous and qualitatively length-scale and potential depen-
dent [12,13,31,34–38]. In particular, increasing attraction of
the penetrantswas shown to lead to strikingly nonmonotonic
diffusion, featuring massive slow-downs in dense mem-
branes due to trapping [39–41]. While partitioning and
diffusion have thus received much attention individually, no
systematic study exists on their combined impact on the
product P.
In this Letter we demonstrate, using Langevin dynamics

simulations of a minimalistic model system of ideal
penetrants in a dense lattice membrane, how the permeabil-
ity can be tuned massively, even maximized or minimized,
by systematically varying the attraction and volume frac-
tion as well as the topology of the membrane. This
nontrivial nonmonotonicity results from a strong anticor-
relation between penetrant partitioning and diffusivity,
especially in attractive membranes. Our findings thus
provide design rules for synthetic membranes to optimize
selectivity and performance of functional and nanofluidic
transport devices.
Methods.—We perform Langevin dynamics simu-

lations [42] of membrane-penetrant systems as shown in
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Fig. 1: A long periodic simulation box is considered, where
in the central slab of volume Vm (the membrane) there is a
simple-cubic (SC) or face-centered-cubic (fcc) lattice of the
membrane-constituting molecules, i.e., spherical sites (red)
whose positions are fixed with the lattice constant l. The
penetrants (blue) are diffusive throughout the whole simu-
lation box and interact with the sites via the Lennard-
Jones (LJ) potential UmpðrÞ¼4ϵmp½ðσmp=rÞ12−ðσmp=rÞ6�,
where for the ideal pointlike penetrants σmp ¼ rs, the radius
of the site. By varying rs, we control the membrane volume
fractionϕm ¼ v=Vm, where v is the volume occupied by the
sites. The radius rs can be larger than l, so we also allow
overlapping between the sites. Details of the methods can be
found in the Supplemental Material [43].
We compute the permeability for various membrane

volume fractions ϕm and membrane-penetrant interaction
energies ϵmp. The partitioning is obtained in equilibrium
using K ¼ cin=c0, i.e., averaging the density of penetrants
inside the slab. Generally, K for the ideal penetrants is

defined via the excess chemical potential Δμ ¼
−kBT ln e−βHmp through K ¼ e−βΔμ [45], where
kBT ¼ 1=β denotes the thermal energy, HmpðrÞ ¼P

iUmpðjr − rijÞ is the membrane-penetrant interaction
Hamiltonian (summing over all sites i), and x̄≡R
dVx=Vm denotes the slab volume average, yielding

exactly

K ¼ e−βHmp; ð2Þ
enabling a direct comparison and verification of the
simulation results. To compute the penetrant long-time
self-diffusivity Din, we perform additional simulations of
penetrants in a periodic box of the lattices, and evaluate the
mean-squared-displacement MSD ¼ 6Dint in the long
time limit, ensuring normal diffusion in the overdamped
regime [43].

Results and discussion.—First, we discuss the results
from the SC lattice membranes. Figure 2(a) shows the
partitioning vs the LJ interaction energy,KðϵmpÞ, at various
membrane packing ϕm. The simulation results (symbols)
reproduce very well the exact theoretical prediction (solid
lines) in Eq. (2). From ϵmp ¼ 0 to nonzero interaction
energies, K features a small jump to values smaller than
unity because the excluded volume of the membrane sites is
switched on. For increasing ϵmp, i.e., increasing attraction,
K strongly rises exponentially as expected [43]. The scaling
K ∝ expðβϵmpÞ (dashed line) fits well the moderate pack-
ing fractions between 0.1 and 0.4 and is given as a guide.
Figure 2(b) shows the scaled penetrant diffusivity

DinðϵmpÞ=D0 inside the membrane at different ϕm. The
diffusion is as expected always slower than bulk diffusion,
D0, due to crowding and diminishes monotonically with
increasing ϵmp. A Kramers’ type scaling for activated
diffusion [25], Din ∝ e−βϵmp , fits the data for moderate
packing and large attractions well. However, overlapping
(many-body) potentials smoothen the energy landscape
[43] and diffusion gets faster again [40,41] for very dense
SC membranes (ϕm ≳ 0.4) but with a weaker scaling with
ϵmp. We computed the landscape roughness defined by the

variance of partitioning σ2μ ¼ ðe−βHmpðrÞ −KÞ2, see [43].
The permeability, the product of K and Din, now results

from drastic cancellations in a nontrivial way. PðϵmpÞ=D0,
shown in Fig. 2(c), varies dramatically with ϕm: For less
crowded membranes (ϕm ≲ 0.3), decreasing diffusivity
wins over increasing partitioning; thus, permeability mono-
tonically decreases. For intermediate membrane packing
around ϕm ¼ 0.3, both diffusivity and partitioning expo-
nentially grow or decay [see the dashed lines in panels (a)
and (b)] and mostly cancel out, yielding P around unity.
For highly crowded membranes (ϕm ≳ 0.3), permeability is
minimized first with respect to ϵmp, and as ϵmp further
increases, partitioning dominates over diffusivity, resulting
in an exponential increase.
In Fig. 2(d) partitioning vs packing fraction, KðϕmÞ, is

shown (symbols), in excellent agreement with the relation
in Eq. (2) (solid lines). As ϵmp varies from repulsive to
attractive interactions, accordingly KðϕmÞ changes from
decreasing to increasing functions. The dashed line depicts
a leading order approximation on a two-body level,
KB2ðϕm; ϵmpÞ ¼ exp ½−2cmBmp

2 � for βϵmp ¼ 1, where cm ∝
ϕm is the membrane number density, and Bmp

2 is the second
virial coefficient. The scaling agrees well with the simu-
lation result for a wide range of densities [43].
Figure 2(e) shows diffusivity vs packing fraction,

DinðϕmÞ=D0. For large βϵmp > 1.0 and around
ϕm ¼ 0.4, interestingly, Din is markedly minimized but
we find also a local maximum around ϕm ¼ 0.6 exempli-
fying the competitive effects of smoothening the energy
landscape (cf. Fig. S10 in [43]) due to overlapping
potentials and increasing steric constraints. The upper

FIG. 1. Snapshots of the two simulated membrane-penetrant
systems. The interaction sites in the membrane (red) are fixed on
a lattice, and the penetrants (blue) are diffusing and interacting
with the membrane sites via the LJ potential. Two different
lattices are considered: (a) simple-cubic (SC) and (b) face-
centered-cubic (fcc) lattices.
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dashed line depicts the limiting law, Din=D0 ¼
expð−ϕmÞ, based on the well-known volume-exclusion
ansatz [12,25,26,41,46], indeed found to be valid for
low ϵmp (mostly repulsive interactions). For high ϵmp

and low ϕm, diffusivity follows rather the power law

Din=D0 ∼ ϕ−2=3
m , limited by the Kramers’ escape from a

well and hopping to a neighboring well in the distance

l ∼ ϕ−1=3
m , and therefore Din ∼ l2=τ ∼ ϕ−2=3

m . The resulting
permeability presented in Fig. 2(f), exhibits again interest-
ing features: It is minimized at ϕm ≃ 0.1 for attractive
membranes and then increases with packing (apart from the
essentially repulsive case βϵmp ¼ 0.1). There is, on the
other hand, an indication of a maximization and a sharp
decrease of P when approaching ϕm ¼ 1, due to vanishing
partitioning in the impenetrable full packing limit.
The results change substantially when slightly varying

the geometry of the membrane, thereby reshaping the
underlying potential landscape roughness σμ [43]. The
partitioning KðϵmpÞ in the fcc lattice membrane at different
ϕm are shown in Fig. 3(a). Partitioning again increases
exponentially. The diffusivity DinðϵmpÞ at different ϕm is
shown in Fig. 3(b), where, unlike in the SC case, it decays
more rapidly as ϕm increases, reflecting the strong effect of

the membrane geometry. As a striking consequence we find
in Fig. 3(c) that permeability is markedly minimized.
Figure 3(d) shows KðϕmÞ for various ϵmp. For repulsive

interactions, partitioning monotonically decreases as the
sites pack more, driven by exclusion. For intermediate
attractive interactions around βϵmp ¼ 0.6, partitioning is
maximized at an optimal packing around ϕm ¼ 0.6, result-
ing from a balance between the attraction and exclusion, as
also found for model membranes of polymer networks [33].
For highly attractive interactions, the maximum point of
partitioning shifts towards the extreme overlapping regime
ϕm ≲ 1. The diffusivity DinðϕmÞ=D0 is shown in Fig. 3(e),
where the limiting laws (dashed lines) qualitatively em-
brace the simulation results. Finally, we show in Fig. 3(f)
permeability PðϕmÞ=D0 at different ϵmp. When the system
is highly attractive while densely and smoothly packed, the
permeability is clearly maximized considerably before the
packing reaches 100%.
To better visualize the correlations and cancellations

between partitioning and diffusivity, we plot K vs Din
diagrams in Fig. 4, where the gray symbols depict
all the simulation data, and the black dashed lines depict
the equipermeability line of P=D0 ¼ 1, where the contri-
butions of K and Din exactly cancel. We observe clear

(a) (b) (c)

(d) (e) (f)

FIG. 2. Simulation results (symbols) for the simple-cubic (SC) membrane-penetrant systems, depending on the membrane-penetrant
LJ interactions ϵmp and the membrane volume fractions ϕm. (a) Penetrant partitioning KðϵmpÞ at different ϕm. The solid lines depict the
exact relation given by Eq. (2). The dashed line shows the scalingK ¼ eβϵmp . (b) Penetrant diffusivity DinðϵmpÞ=D0 at different ϕm. The
dashed line depicts the scaling Din=D0 ¼ e−βϵmp . (c) Permeability PðϵmpÞ=D0 ¼ KDin=D0 at different ϕm. (d) KðϕmÞ at different ϵmp.
The solid lines depict the exact relation in Eq. (2). The dashed line depicts the approximationKB2ðϕmÞ at βϵmp ¼ 1 (see text for details).
(e) DinðϕmÞ=D0 at different ϵmp. The dashed lines depict the approximation Din=D0 ¼ expð−ϕmÞ valid for low ϵmp and ϕm, and the

Kramers scaling Din=D0 ∼ ϕ−2=3
m with two different prefactors, valid for high ϵmp and low ϕm. (f) PðϕmÞ=D0 at different ϵmp.
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anticorrelations along the equipermeability line, that is, in
general partitioning and diffusion like to cancel out. In
other words, increasing attraction slows down mobility in a
similar, exponential fashion. However, depending on the
potential details, in some cases the diagram shows more
complex pathways (dashed lines between the symbols) in

the K −Din phase space. For instance, for the SC sites K
becomes less sensitive on Din but the magnitude changes
over six decades when they are highly dense [panel (a)],
and Din is significantly minimized when they are highly
attractive [panel (b)], pointing to very smooth potential
landscapes. For fcc sites, the diagram clearly shows global

(a) (b) (c)

(d) (e) (f)

FIG. 3. Simulation results (symbols) for the fcc membrane-penetrant systems, depending on the membrane-penetrant LJ energy ϵmp
and the membrane volume fraction ϕm. Note that we plot the decadic log of the observables. (a) Penetrant partitioning KðϵmpÞ at
different ϕm. The solid lines depict the exact relation in Eq. (2). The dashed line shows the scaling K ¼ eβϵmp . (b) Penetrant diffusivity
DinðϵmpÞ=D0 at different ϕm. The dashed line depicts the scaling Din=D0 ¼ e−βϵmp . (c) Permeability PðϵmpÞ=D0 ¼ KDin=D0 at
different ϕm. (d)KðϕmÞ at different ϵmp. The solid lines depict the exact relation in Eq. (2), and the dashed line depicts the approximated
partitioning KB2 at βϵmp ¼ 0.6 (see text for details). (e) DinðϕmÞ=D0 at different ϵmp. The dashed lines depict the approximation

Din=D0 ¼ expð−ϕmÞ valid for low ϵmp and ϕm, and the scaling Din=D0 ∼ ϕ−2=3
m valid for high ϵmp and low ϕm. (f) PðϕmÞ=D0 at

different ϵmp.

FIG. 4. Partitioning-diffusivity (K-Din) correlation diagram. The gray symbols depict all the simulation results and colored symbols
correspond to chosen parameters in the legends. (a) Simple-cubic (SC) membrane-penetrant systems at different membrane volume
fractions ϕm. (b) SC membrane-penetrant systems at different membrane-penetrant interactions ϵmp. (c) Face-centered-cubic (fcc)
membrane-penetrant systems at different ϕm. (d) fcc membrane-penetrant systems at different ϵmp. The black dashed lines depict the
equipermeability line of P=D0 ¼ 1.
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minimization of K [panel (c)] and permeability maximi-
zation [panel (d)].
The theoretical description for diffusivity in our work is

limited to scaling theories. The description of diffusion in
multidimensional energy landscape, even for noninteract-
ing penetrants, is very complex, see, e.g., Refs. [25,31],
and no explicit or unified analytic framework is available.
For dense membranes, however, we note that we attempted
to adopt the excess entropy scaling approach, Din ∼
D0ebΔS=kB [47–49]. We find qualitative agreement of the
theory with the simulation results [43]. Also, we note that
we tested nonideal penetrants with nonvanishing excluded
volume in the SC membrane system and we found the same
qualitative features as for the ideal penetrants [43].
Within the solution-diffusionmodel the final permeability

can be conveniently interpreted by the individual or com-
bined action of two intuitive processes, the partitioning and
the mobility of the solutes. The maximum in permeability
for example can then be traced back to microscopic
phenomena, such as excluded volume or smoothened
energy landscapes. This in-depth interpretation may lead
to improved design rules for membrane manufacture
[3,5–8]. Interestingly, our apparently simple, very ordered
systems behave very complex (SC vs fcc), much owed to the
periodicity of the potential energy landscapes. In reality,
membranes will have some amount of disorder that may
smear out some effects; however, we do not observe less
complex behavior in a more disordered array of dense
attractive sites [43]. A recent study, however, demonstrated
that the permeability of a polymer membrane increased by
orders of magnitude when the polymer crystallizes and is
more ordered [50]. The amount of order therefore may be in
principle an important tuning parameter.
In summary, we demonstrated how to tune the per-

meability (in the overdamped regime) of dense membranes
over orders of magnitude by shaping nanoscale potentials.
The complex behavior of the permeability results from a
strong anticorrelation and partial cancellation between
penetrant partitioning and diffusivity, particularly in highly
attractive membranes and fine-tuned by details of the
potential landscape. This interaction-specific control of
membrane permeation bears possible rational design appli-
cations in material science and nanofluidics to selectively
transport solvents and solutes for the desired material
function. High resolution 3D laser micro- and nanoprinting
with a variety of materials has become possible [51] so that
our results shall be useful for membrane design with
submicron internal structure, to control the architecture,
pore shape, porosity, or interconnectivity of the scaffold,
enhancing the membrane design [52] or tissue engineering
[53] with 3D printing technology.
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