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The plethora of recent discoveries in the field of topological electronic insulators has inspired a search
for boson systems with similar properties. There are predictions that ferromagnets on a two-dimensional
honeycomb lattice may host chiral edge magnons. In such systems, we theoretically study how magnons
and phonons couple. We find topological magnon polarons around the avoided crossings between phonons
and topological magnons. Exploiting this feature along with our finding of Rayleigh-like edge phonons in
armchair ribbons, we demonstrate the existence of chiral edge modes with a phononic character. We predict
that these modes mediate a chirality in the coherent phonon response and suggest measuring this effect via
elastic transducers. These findings reveal a possible approach towards heat management in future devices.
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Introduction.—Topological electronic insulators [1–5]
are characterized by an insulating bulk with conducting
“chiral” edge states. The unidirectional propagation of
these chiral modes is “topologically protected” against
defects at low temperatures when we can disregard inelastic
scattering from phonons [5]. This has led to the develop-
ment of a wide range of essential concepts, including
Majorana modes [6–9], topological quantum computation
[10,11], and chiral transport. Inspired by these findings,
there has been an upsurge of efforts towards finding similar
states in other systems [12] with an emphasis on bosonic
excitations [13–19]. There are predictions of topological
magnons [15–17] in honeycomb ferromagnets with an
engineered Dzyaloshinskii-Moriya interaction [20,21] that
induces the necessary band gap. In contrast to fermionic
systems with Fermi energy within this band gap, the bulk is
not necessarily insulating in bosonic systems [22].
The field of magnonics [23–26] focuses on pure

spin transport mediated by magnons [27]. It is possible
to exploit the low-dissipation and wavelike nature of these
excitations in information processing [28,29]. The coherent
pumping of chiral surface spin wave (Damon-Eshbach)
modes induces cooling via incoherent magnon-phonon
scattering [30]. Besides application oriented properties,
the bosonic nature of magnons, combined with spintronic
manipulation techniques [24,31], allows for intriguing
physics [32–35]. The coupling [36] between magnons
and phonons fundamentally differs from the electron-
phonon interaction and results in a coherent hybridi-
zation of the modes [37], in addition to the temperature
dependent incoherent effects [30,38] discussed above. The
direct influence of the hybridization between magnons
and phonons, known as magnon polarons [39,40], has
been observed in spin and energy transport in magnetic
systems [41–46].

In this Letter, we address the robustness of the topo-
logical magnons in a honeycomb ferromagnet [15–17]
against their coupling with the lattice vibrations. In contrast
to the case of electron-phonon coupling, where phonons
can be disregarded at low temperatures, the magnon
dispersion may undergo significant changes with new
states emerging in the band gap [45,46]. We find that in
the honeycomb ferromagnet with spins oriented orthogonal
to the lattice plane, only transverse phonon modes with out-
of-plane displacement couple to spin. To understand the
eigenmodes, we evaluate and analyze the coupled spin and
out-of-plane phonon modes for an infinitely large plane
as well as for a finite ribbon geometry. We quantify the
effect of the magnetoelastic coupling on the magnon Hall
conductivity and find a nonmonotonic dependence on
the coupling strength. Our analysis of the finite ribbons
shows that topological magnons hybridize with bulk
phonons around the avoided crossings in their coupled
dispersion, forming magnon polarons with topological
chiral properties. Hence, while their edge localization is
weakened, the magnetoelastic coupling does not com-
pletely remove the topological magnons. Furthermore,
we find that armchair edges support Rayleigh-like edge
phonon modes in sharp contrast to the zigzag edges. When
topological magnons hybridize with these edge phonons,
edge magnon polarons with almost undiminished chirality
are formed. We suggest a setup that utilizes this induced
chirality in coherent phonon transport. Such systems enable
the observation of the topological physics and serve as a
prototype for a unidirectional heat pump. This offers a
highly feasible alternative to producing topological phonon
diodes [47–49].
Model.—We consider a ferromagnetic material with

localized spins on a two-dimensional honeycomb lattice,
allow for out-of-plane vibrations of the lattice sites, and

PHYSICAL REVIEW LETTERS 122, 107201 (2019)

0031-9007=19=122(10)=107201(6) 107201-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.107201&domain=pdf&date_stamp=2019-03-11
https://doi.org/10.1103/PhysRevLett.122.107201
https://doi.org/10.1103/PhysRevLett.122.107201
https://doi.org/10.1103/PhysRevLett.122.107201
https://doi.org/10.1103/PhysRevLett.122.107201


assume there is magnetoelastic coupling. This system can
be modelled by a Hamiltonian of the form H ¼ Hmþ
Hph þHme, where Hm is the magnetic Hamiltonian, Hph

describes the phonons, and Hme represents the magnetoe-
lastic coupling.
The Hamiltonian we consider is inspired by the Haldane

model [1], and given by [15–17]

Hm ¼ −J
X
hi;ji

Si · Sj þD
X
⟪i;j⟫

νijẑ · Si × Sj − B
X
i

Szi : ð1Þ

The first term describes the ferromagnetic exchange cou-
pling between nearest neighbor sites, while the second
accounts for the Dzyaloshinskii-Moriya interaction [20,21]
between next-to-nearest neighbors [50]. The Haldane sign
νij ¼ �1 depends on the relative orientation of the next-
to-nearest neighbors as shown in Fig. 1(a), and is the root
of nontrivial topological properties. We let the nearest
neighbor distance be d and the next-to-nearest neighbor
distance be a. References [16,17] discuss the dispersion
relation and Berry curvature of this spin model in linear
spin wave theory.

For the phonon Hamiltonian, we consider only the
out-of-plane degrees of freedom since only these modes
couple to the spin to lowest order in the linear spin wave
expansion. We assume nearest-neighbor interactions with
elastic constant C, let the mass associated with the spins on
the lattice sites be m, and disregard substrate coupling.
Introducing Sk ¼

P
β cosðk · βÞ, where the sum is over the

three next-to-nearest neighbor vectors β of Fig. 1(a), we
obtain the dispersion relation

ωph
� ðkÞ ¼

ffiffiffiffi
C
m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2Sk

pq
ð2Þ

for the free phonon modes.
Motivated by the continuum limit description [36,37],

we write down the lattice magnetoelastic coupling to linear
order in the magnon amplitude, obtaining

Hme ¼ κ
X
D

X
i∈D

X
αD

Si · αDðuzi − uziþαD
Þ; ð3Þ

where κ parametrizes the strength of the magnon-phonon
coupling,

P
D denotes the sum over sublattices,

P
i∈D is

the sum over the lattice sites on theD sublattice, and αD are
the corresponding nearest neighbor vectors. The out-of-
plane deviation for lattice site i is denoted by uzi.
Bulk spectrum.—We introduce the Holstein-Primakoff

representation of spins and use linear spin wave theory in
the spin- and magnetoelastic terms [27]. Within the rotating
wave approximation [51], the resulting Hamiltonian des-
cribing the phonon and magnon modes of the system is
obtained asH¼P

kψ
†
kMkψk, where ψ

†
k¼ða†k;b†k;c†k−;c†kþÞ.

Here, ak and bk are annihilation operators for the sublattice
magnon modes on the A and B sublattices, while ck� are
the annihilation operators for the phonon modes. The
matrix Mk takes the form

Mk ¼

0
BBBBB@

Aþ hz h− gA− gAþ
hþ A − hz gB− gBþ
g�A− g�B− ωph

k− 0

g�Aþ g�Bþ 0 ωph
kþ

1
CCCCCA
; ð4Þ

where A ¼ 3JSþ B, hzðkÞ ¼ 2DS
P

β sinðk · βÞ, h−ðkÞ ¼
−JS

P
α expð−ik · αÞ, and hþ ¼ ðh−Þ�. The coupling

between the D-sublattice magnons and the phonon
branch � is captured by gD�, which is proportional
to the dimensionless coupling strength κ̃ ¼ ðκd=JSÞ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2S2=16m2ðC=mÞ4

p
. The spectrum obtained by diagonal-

izing this matrix is plotted in Fig. 1(c) along the paths
displayed in Fig. 1(b).
Hall conductivity.—The topological nature of the spin

model is manifested in the magnon Hall conductivity that

(a)

(c)

(b)

FIG. 1. (a) Lattice geometry showing the nearest neighbor
vectors α, next-to-nearest neighbor vectors β, and the Haldane
sign νij ¼ �1. (b) The first Brillouin zone in reciprocal space,
including the paths along which we plot the dispersion relation in
(c). The parameter values used are D ¼ 0.1J, B ¼ 0.4JS,ffiffiffiffiffiffiffiffiffiffi

C=m
p ¼ 1.5JS, and rescaled coupling strength κ̃ ¼ 0.03 (see
main text). The magnon (yellow) and phonon (purple) character
of the modes is indicated with colors. The modes are significantly
affected by the magnetoelastic coupling only close to avoided
crossings.
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arises because of the time-reversal symmetry breaking
caused by the Dzyaloshinskii-Moriya interaction.
The spin current operator Jγ may be found from a

continuity equation or magnon group velocity approach
[52], both yielding

Jγ ¼
X
k

�
a†k b†k

��∂HmðkÞ
∂kγ

��
ak
bk

�
ð5Þ

along the Cartesian direction γ. Here, HmðkÞ is the matrix
representation of the magnon Hamiltonian. Assuming we
apply a weak in-plane magnetic field gradient ∇B, we are
interested in the current j ¼ σ∇B, which is determined by
the conductivity tensor σ [52]. The Hall conductivity can be
calculated using the Kubo formula, giving

σxy ¼
X
k

X
α;β≠α

nBðEkαÞCαβðkÞ; ð6Þ

where Ekα is the energy eigenvalue of band α and nBðEkαÞ
is the corresponding Bose factor. The curvature tensor Cαβ

is given by

CαβðkÞ ¼ i
Jαβy ðkÞJβαx ðkÞ − Jαβx ðkÞJβαy ðkÞ

ðEkα − EkβÞ2
; ð7Þ

where ðα; βÞ are band indices, and Jαβγ ðkÞ are the energy
eigenstate matrix elements of the current operator at
quasimomentum k. Disregarding the magnetoelastic cou-
pling, the band curvature Cα ¼

P
β≠αCαβ can be identified

as the Berry curvature.
Expressing the sublattice magnon operators in terms of

the eigenmode operators, one may identify the current
matrix elements Jαβγ and integrate the curvature over the
Brillouin zone to obtain the Hall conductivity. We are
particularly interested in the effect of the magnetoelastic
coupling, and therefore present the dependence of the Hall
conductivity on the dimensionless coupling κ̃ in Fig 2.
To understand this dependence, we consider the curva-

ture tensor Cαβ. When the bands α and β both have a
predominant magnon content, the topological nature of the
underlying magnons gives a finite curvature. This magnon
curvature is largest close to the Dirac points [16,17]. Close
to an avoided crossing, the magnetoelastic coupling
changes the spectrum and causes transfer of band curvature
between the relevant bands α and β. The latter can be seen
by plotting the curvature tensor element Cαβ for the band
pairs with avoided crossings, as shown in the insets of
Fig 2. The resulting change in Hall conductivity is given by
these curvature tensor elements weighted with the differ-
ence between the Bose factors of the relevant bands. This
follows from the antisymmetry property of the curvature
tensor. The two band pairs in the insets contribute oppo-
sitely to the Hall conductivity, and the competition between

their curvature transfer explains the nonmonotonic behav-
ior of the Hall conductivity.
Ribbon geometry and coherent transport.—Due to the

topological nature of the magnon model under consider-
ation and the bulk-boundary correspondence, there are
gapless magnon edge states in a finite sample [5,15–17].
Considering an armchair ribbon with finite width, the one-
dimensional projection of the energy spectrum is plotted in
Fig. 3. The corresponding spectrum for the zigzag edge
ribbon is given in the Supplemental Material [53], where
also Refs. [54–58] appear. Magnon and phonon modes
hybridize in regions with an avoided crossing. When the
upper phonon band lies within the band gap of the pure
magnon spectrum, there are modes with a mixed content
of chiral magnon edge states and phonons. Although the
spectra look qualitatively similar, there is a crucial dis-
tinction between the two cases. For the zigzag edge
configuration, all the phonon modes are delocalized
throughout the sample, while the armchair edges host
“Rayleigh-like” edge phonon modes. In direct analogy
with Rayleigh modes on the surface of a three-dimensional
material, the localization length of these modes is directly
proportional to their wavelength, as shown in the
Supplemental Material [53]. These edge phonon modes
are supported by the half-hexagon protrusions of the
armchair edge that can pivot around the bonds parallel
to the edges connecting these protrusions, see Fig. 3. No
such parallel bonds exist for the zigzag edge.
The Hall conductivity is a hallmark of topological elec-

tronic properties and motivates a similar role for the Hall
conductivity mediated by topological magnons. However,

FIG. 2. Dependence of the Hall conductivity on the magne-
toelastic coupling strength κ̃ for parameter values D ¼ 0.1J,
B ¼ 0.4JS, and

ffiffiffiffiffiffiffiffiffiffi
C=m

p ¼ 1.5JS for different temperatures T in
units of JS. The insets show the quasimomentum dependence of
the curvature tensor at κ̃ ¼ 0.03 for band pairs (1,2) and (2,3),
where the bands are labeled according to their energy, and band 1
is the lowest band. The dominant contribution in these band
pairs comes from the regions with avoided crossings of the
respective bands.
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in contrast to electrons, the bosonic nature of the magnons
results in the lack of a general proportionality between the
magnon Hall conductivity and the Chern number [52].
Furthermore, the observation of a magnon planar Hall
effect [59] in a cubic, nontopological magnet suggests that
this Hall conductivity may not be regarded as a smoking-
gun signature for topological properties. Thus, we suggest a
complementary approach to observe the topological nature
of the underlying magnons by elastically probing the
chirality of the magnetoelastic hybrid modes.
We propose to observe coherent chiral phonon propa-

gation in the experimental setup of Fig. 4(b) by utilizing the
edge modes, as depicted schematically in Fig. 4(a) [60], on
the upper armchair edge of the sample. Taking inspiration
from previous related experiments [41,61], we suggest
injecting elastic energy into the sample middle at the upper
edge using a nanoscale variant of the interdigital transducer
design [62,63], elaborated further in the Supplemental
Material [53]. For a given transducer design, modes are
excited with fixed wave vectors �kx and a tunable
frequency. Similar transducers can be used to detect the
elastic response pL=R on the left (L) and right (R) edges of
the sample. Here, pL=R is the elastic power detected at the
transducers.
Figure 4(a) schematically depicts the dispersion for

the magnetoelastic modes localized on an armchair edge.
Disregarding magnetoelastic coupling, the edge hosts two
counterpropagating Rayleigh-like edge phonons and a
single chiral edge magnon. There is thus no chirality in
the phononic response. Due to magnetoelastic coupling, the
Rayleigh-like phonon with wave vector −kx hybridizes

with the chiral magnon to form a magnon polaron while the
other phonon remains unchanged. This breaks the sym-
metry between the counterpropagating phononic modes
and the result is nonzero chirality χ¼ðpR−pLÞ=ðpRþpLÞ.
Furthermore, as shown in Fig. 4(a), the hybridization with
the magnon mode reverses the group velocity direction of
the participating phonon mode. In principle, this gives
perfectly chiral phonon transport.
The wave vector location of the avoided crossing can

be tuned via the Zeeman shift in the magnon dispersion.
Performing a frequency integrated measurement over an
energy range of the same order as the magnetoelastic
coupling, one obtains a peaked chirality when the magnetic
field is such that the wave vector of the avoided crossing
coincides with the wave vector of the transducer, obtaining

FIG. 3. One-dimensional projection of the dispersion relation
for the magnetoelastic modes on a honeycomb ribbon with
armchair edges. In addition to the bulk bands, there are two
topological edge magnon states crossing the magnon band gap, as
well as Rayleigh-like edge phonons. The inset shows the avoided
crossing of a topological magnon edge mode with the two
quasidegenerate edge phonon modes. The parameter values are
B ¼ 0,

ffiffiffiffiffiffiffiffiffiffi
C=m

p ¼ 1.37JS, D ¼ 0.1J, and κ̃ ¼ 0.03.

(b)

(a)

FIG. 4. (a) Schematic spectrum for the coupled Rayleigh-like
edge phonons and the topological edge magnon on the upper
armchair sample edge. The phonon at quasimomentum −kx
hybridizes with the chiral magnon, while the phonon at quasi-
momentum þkx is unaffected due to the lack of a magnon with a
matching wave vector at this edge. At the avoided crossing, there
is propagation direction reversal for the modes with a phononic
content. The color of the dispersion represents its nature with
purple representing phononic and yellow magnonic character.
(b) Proposed experimental setup for detecting coherent chiral
transport through excitation of phononic modes. Elastic energy is
injected in the sample middle on the upper armchair edge and
detected at the left (L) and right (R) edges using wave vector and
frequency resolved elastic transducers (purple). By exciting
modes at the avoided crossing in (a), only the elastic excitations
at one of the two quasimomenta �kx are converted into
hybridized modes (green arrows). This gives a chiral response,
and the chirality is peaked when the wave vector of the avoided
crossing coincides with the fixed wave vector of the transducer.
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a chirality as shown in Fig. 4(b). Performing a similar
transport experiment on the zigzag edge does not give
chiral phonon transport since the delocalized phonons
hybridize with counterpropagating magnons on both the
edges, thereby destroying the overall chirality. In addition,
the size of the avoided crossing is smaller due to the smaller
overlap with the localized chiral magnon. The armchair
edge is therefore crucial for obtaining the chirality.
Summary.—We have examined the robustness of topo-

logical magnons in a honeycomb ferromagnet against
their interaction with phonons. Their topological proper-
ties, albeit weakened, survive the magnetoelastic coupling.
The magnon Hall conductivity of the system is found
to depend on the magnetoelastic coupling strength in a
nonmonotonic, temperature-sensitive manner. Exploiting
the Rayleigh-like edge phonons in armchair ribbons,
we predict the existence of topological magnon polarons
confined to the boundary. We have suggested an exper-
imental setup capable of probing the chiral nature of the
topological magnon polarons by elastic means, which thus
serves as a platform for chiral coherent phononic transport.
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of Norway Grant No. 262633 “Center of Excellence on
Quantum Spintronics,” and No. 250985, “Fundamentals of
Low-dissipative Topological Matter.”
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