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We demonstrate many-body multifractality of the Bose-Hubbard Hamiltonian’s ground state in Fock
space, for arbitrary values of the interparticle interaction. Generalized fractal dimensions unambiguously
signal, even for small system sizes, the emergence of a Mott insulator that cannot, however, be naively
identified with a localized phase in Fock space. We show that the scaling of the derivative of any
generalized fractal dimension with respect to the interaction strength encodes the critical point of the
superfluid to the Mott insulator transition, and provides an efficient way to accurately estimate its position.
We further establish that the transition can be quantitatively characterized by one single wave function
amplitude from the exponentially large Fock space.
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The properties of a quantum system are crucially
determined by the statistical features of its Hamiltonian,
as manifestly shown by the applicability of random matrix
theory in a variety of scenarios. For instance, the system’s
dynamical behavior (e.g., the presence of localization,
relaxation, or long-time equilibration [1,2]) depends deci-
sively on the nature of the eigenenergies and eigenstates,
which can exhibit high statistical complexity in the form of
multifractality [3,4]. Multifractal wave functions appear in
random matrix models [5–9], quantum maps [10–14], and
most prominently at the disorder-induced metal-insulator
transition [15–18], in the absence (see Refs. [19–21] for
recent numerical studies) and in the presence of interactions
[22–27]. The role of multifractality for this transition in
involved geometries [28–32] as well as in the many-body
localization context [33–37] is currently a subject of intense
research. Interestingly, in the absence of any disorder,
multifractality seems to be a generic property of the ground
state of many-body spin Hamiltonians [38–42], in which
different quantum phases can be identified by corrections to
multifractal scaling [43,44].
In this work, we demonstrate that the statistical complex-

ity of many-body states in “clean” (not disordered) bosonic
systems can be described in terms of multifractality. Such
characterization can not only provide an unambiguous
identification of localized, extended, and ergodic wave
functions, but also exposes how the presence of different
macroscopic properties (phases) of the system is rooted in
the Hilbert-space structure of quantum states. Here, we
exemplify the potential of such analysis by showing that the
multifractal properties of the Bose-Hubbard Hamiltonian
(BHH) ground state in the Fock basis carry a distinctive
signature of the transition from superfluid (SF) to Mott
insulator (MI), as shown in Fig. 1. This novel approach
reveals that the transition is fully encoded in the behavior of
one single wave function amplitude in Fock space, and

it further provides an efficient way to locate the criti-
cal point.
Let us consider the expansion of a quantum state in an

orthonormal basis of the underlying Hilbert space of size
N , jΨi ¼ PN

j¼1 ψ jjji, and define the q moments of the

distribution of intensities as Rq ¼
PN

j¼1 jψ jj2q, for q ∈ Rþ.
The scaling of Rq with N reveals the asymptotic statistics
(for largeN ) of the participation of the basis elements jji in
the state jΨi. Such scaling is generically expected to be of
the form Rq ∼N −ðq−1ÞDq , where 0 ≤ Dq ≤ 1 are the
generalized fractal dimensions (GFDs). An ergodic
extended state in the considered basis, defined by jψ jj2 ∼
N −1 asN → ∞, hasDq ¼ 1 for all q. On the other hand, if
for any q > 1 saturation of Rq withN is observed we speak

FIG. 1. Finite-size fractal dimensions of the BHH ground state
versus J=U and filling factor ν (abscissa axis in both plots).
Upper panel: Density plot of D̃1 for L ¼ 6 after linear inter-
polation of the numerically calculated points indicated by the
black grid. White crosses indicate the position of the SF to MI
transition [45,46]. Lower panel: D̃2 for J=U ¼ 1 (open symbols),
J=U ¼ 10−2 (filled symbols) and L ¼ 6 (black), 7 (blue),
8 (green), 9 (orange).
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of localized states, for which, consequently,Dq>1 ¼ 0 [47].
If q-dependent values 0 < Dq < 1 occur, the state is
multifractal in the jji basis [3,17,18]. The parameter q
controls which wave function intensity (roughly, which
value of −logN jψ jj2) dominates Rq for large N . Thus,
different dimensions Dq ensue if each set of points in the
wave function with a certain intensity scales differently
when enlarging the Hilbert space accessible to jΨi, i.e., if
the volume of each intensity set scales as a power law ofN
with its own (in general noninteger) exponent. In such case,
each intensity set is a fractal, and their superposition makes
up the multifractal state.
In order to characterize multifractality, it is useful to

define N -dependent dimensions D̃q,

D̃q ≡ 1

1 − q
logNRq; ð1Þ

that for increasing N converge to the GFDs, Dq ¼
limN→∞D̃q. Note that D̃q¼Sq=lnN , where Sq is the
Shannon-Rényi entropy of degree q of the jψ jj2 distribu-
tion. Among the GFDs, we single out the cases q ¼ 1, 2,
and ∞. The exponent D1 is known as the information
dimension since it determines the scaling of the Shannon
information entropy, −

P
j jψ jj2 ln jψ jj2 ∼D1 lnN . The

dimension D2 controls the growth of the participation
ratio, R−1

2 , which is regarded as a measure of the “volume”
of the state: finite and N independent for localized wave
functions but unbounded for extended states. For a multi-
fractal state R−1

2 ∼N D2 ; i.e., its “volume” diverges with N
but it occupies a vanishing fraction of the total Hilbert
space. Multifractal wave functions are therefore an example
of nonergodic extended states. For q ¼ ∞ the moments Rq

are determined by the maximum value of the intensities,
pmax ≡maxjjψ jj2, and D̃∞ ¼ − logN pmax. The GFDs as
well as their finite-size counterparts are always monoton-
ically decreasing functions of q [48]. Hence, the minimum
GFD is D∞ (D̃∞ for fixed N ).
We apply this formalism to analyze the statistical

properties of the ground state of the BHH in one dimension
(1D) [49–51], which in terms of bosonic annihilation and
creation operators, bk, b

†
k, nk ≡ b†kbk, reads

H ¼ −η
X

k

ðb†kbkþ1 þ b†kþ1bkÞ þ
1

2

X

k

nkðnk − 1Þ; ð2Þ

where η≡ J=U is the ratio of hopping to interaction
strength (U > 0). Our system includes N bosons in L
lattice sites with periodic boundary conditions (PBCs). In
the thermodynamic limit (N, L → ∞), at fixed integer
filling factor ν≡ N=L, the ground state of H undergoes a
Berezinskii-Kosterlitz-Thouless (BKT) phase transition as
a function η, between a MI and a SF state [52–54]. In 1D,

the position of the critical point for ν ¼ 1 has been
estimated to be ηc ≃ 0.3, both theoretically (see
Refs. [51,55,56] and references therein) and experi-
mentally [57].
A convenient basis of the Hilbert space of H, of size

N ¼ ðNþL−1
N Þ, is given by the Fock states of the on-site

density operators, jni≡ jn1; n2;…; nLi, where knk1 ¼ N.
Hence, the ground state of the system can be expanded as
jΨðηÞi ¼ P

n ψnðηÞjni. For integer ν and η → 0, the
ground state is given by one element of the Fock basis,

jΨð0Þi ¼ jν; ν;…; νi≡ jνi: ð3Þ

Conversely, in the noninteracting limit (η → ∞) the inten-
sities of jΨi converge to

jψnð∞Þj2 ¼ N!

LNn1!n2!…nL!
; ð4Þ

and the full Fock basis participates in the state. The
extremely localized nature of the ground state for η ¼ 0

leads to D̃q>0 ¼ Dq>0 ¼ 0. For η → ∞, the GFDs can also
be analytically obtained, and have nontrivial q-dependent
values, e.g., for ν ¼ 1, D1 ¼ 0.941, D2 ¼ 0.907,
D∞ ¼ ð2 ln 2Þ−1 ¼ 0.721; i.e., the ground state exhibits
multifractality in the Fock basis [58,60].
How do the GFDs evolve with η between these two

limits, and does this evolution expose the MI-SF transition?
For such intermediate values of η, the multifractal analysis
must be performed numerically: We combine exact diag-
onalization (for systems L ≤ 10) with a recently proposed
technique [43,61–63] based on quantum Monte Carlo
(QMC) simulations to estimate the moments Rq for larger
systems efficiently [64].
Remarkably, the analysis of the finite-size dimensions

D̃q for different η and varying filling factor reveals a
distinct and unambiguous signal of the emergence of a MI
state, as demonstrated in Fig. 1. Whereas for weak
interaction the finite-size GFDs change monotonically with
ν, they register a pronounced drop towards zero at integer
densities in a range of η that clearly correlates with the MI
phase. For integer density, all D̃q vanish asymptotically as
η → 0. For noninteger filling, however, all D̃q remain finite
as η → 0, signaling the persistence of a SF phase for any
value of the interaction.
Let us further note that, for integer ν, according to

Eqs. (3) and (4), the maximum intensity of jΨðηÞi in the
Fock basis occurs for the homogeneous state jνi in both
limits η ¼ 0 and η ¼ ∞. The hopping and interaction terms
of H minimize independently the energy by maximizing
the amplitude on jνi. This property persists for any value of
η and L (when using PBCs) as illustrated in Fig. 2. This
makes the dimension D̃∞ particularly accessible, since it
will be entirely determined by the probability jhνjΨðηÞij2,
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which can be straightforwardly estimated using QMC
simulations.
An overview of the η dependence of D̃q, for q ¼ 1, 2,∞,

ν ¼ 1 and different L is shown in Fig. 3. The value of the
finite-size GFDs is strongly suppressed for small η and rises
quickly as the vicinity of the critical value ηc is approached.
The SF phase thus correlates with higher values of D̃q,
indicating a faster growth of the ground state’s volume in
Fock space as L → ∞. Although convergence towards the
thermodynamic limit Dq is rather slow, the data strongly
suggest that multifractality exists for any η. We emphasize
that for η ≪ 1 and η ≫ 1 the GFDs for small L are very
well described by perturbation theory [60], as shown in the
inset of Fig. 3.
From the behavior observed in Fig. 3, it is rather appealing

to think that D̃q may vanish in the thermodynamic limit for

η ≤ ηc. In such a case, the MI phase would have a simple
interpretation as a localized phase in Fock space—which can
be viewed as an intricate lattice, whose nodes, i.e., the states
jni, have different energies and are connected by the
hopping term of the Hamiltonian [Eq. (2)]. Nevertheless,
as N → ∞, the coordination number of the Fock lattice
diverges linearlywithL, and therefore, naively, the existence
of localization in the thermodynamic limit appears unlikely.
In order to ascertain the presence or absence of localization
in the MI phase, a properN → ∞ extrapolation is required,
for which knowledge of the expected finite-size corrections
is essential. The analytical calculation of the GFDs in the
noninteracting limit provides access to the leading finite-L
corrections, whose form is essentially determined by the
dependence of N on L. Using insights from perturbation
theory and the analysis of plausible asymptotic behaviors of
Rq, we find that the dominant finite-size corrections in the
scaling of the GFDs for any η are

D̃q ¼ Dq þ α
lnL
L

þ β
1

L
þ γ

ln2L
L2

þOðL−2 lnLÞ; ð5Þ

with η- and ν-dependent coefficients α, β, γ.
We analyzed the minimum dimension D̃∞ for system

sizes up to L ¼ 70 at unit filling for η ¼ 1=7 < ηc. The
numerical data are perfectly described by the first four
terms in Eq. (5), as shown in Fig. 4. Indeed, only if the four
terms are present can a reliable fit be obtained. The
resulting D∞ is distinctively nonvanishing (consequently
Dq > 0 for all q), and hence Fock-space localization in the
MI phase is ruled out.
We conclude that there is no fingerprint of the transition

in the raw values of the GFDs: In the thermodynamic limit,
the dependence of Dq with η will exhibit an overall
behavior similar to that observed in Fig. 3 for finite
Fock spaces. Yet the evolution of the GFDs might still
encode the transition. The MI-SF crossover for finite L has
recently been inspected from another perspective: In 2D via
the η derivatives of the expectation value of simple
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FIG. 2. Intensities jψnj2 in the Fock basis of the BHH ground
state versus η for L ¼ 10, ν ¼ 1. Solid lines highlight the
maximum and minimum intensities on a Fock state with a certain
number of particle-hole (p-h) excitations on top of the homo-
geneous state jνi. The values of η considered are highlighted by
symbols only for the maximum intensity. Dashed lines indicate
the intensity value of the first two p-h manifolds for η ¼ ∞
[see Eq. (4)].
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FIG. 3. Finite-size GFDs D̃q (q ¼ 1, 2, ∞) of the BHH ground
state versus η for ν ¼ 1. Solid lines in main panel are numerical
results (L ¼ 16 only for q ¼ ∞). Horizontal dashed lines mark
the Dq values for η ¼ ∞. The inset shows numerical (symbols)
and analytical results from perturbation theory (solid lines) for
L ¼ 8.
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FIG. 4. Extrapolation of D̃∞ as L → ∞ for η ¼ 1=7, ν ¼ 1.
Symbols are numerical data. The solid line is the best fit to Eq. (5)
(chi square ≃10 with 13 degrees of freedom). The horizontal
dashed line and the shaded area mark, respectively, the D∞ value
and its 95% confidence interval. The secondary abscissa axis
indicates the size of Fock space for each L.
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observables [67], and in 1D using the fidelity susceptibility
[45,68,69]. The common underlying idea to these
approaches is to use the η sensitivity of the ground state
as a figure of merit. In our formalism, the η dependence of
the dimensions D̃q exposes manifestly the variation in the
structure of the ground state in Fock space, and, conse-
quently, we find that the rate of change of the GFDs with η
reveals the critical point.
In Fig. 5, we show D̃∞ as a function of η and its

corresponding derivative D̃0
∞ðηÞ≡ dD̃∞=dη for L ≤ 30.

When approaching the transition from the MI side, the
derivative develops a distinct single maximum at a certain
value η�ðLÞ that shifts towards ηc for increasing L. In order
to locate reliably the position of the maximum, we first find
the best fit of the numerical D̃∞ data to a Padé approximant,
which is then differentiated. The analysis of D̃2 reveals the
same behavior [70]. The scaling expected for the position
of the maximum of the derivative follows from the
assumption that at η�ðLÞ the correlation length ξ [49]
(ruling the spatial decay of the single-particle density
matrix elements, hb†kbkþri ∼ e−r=ξ) is proportional to the
system size. While ξ is finite and L independent in the MI
phase, it diverges at the transition and within the SF phase
[71]. We expect that the steepest change of each GFD with
increasing η correlates with the region where ξ ∼ L; i.e., it
signals the crossover for a finite system. For η < ηc the
correlation length exhibits the exponential dependence
ξ ∼ expðb= ffiffiffiffiffiffiffiffiffiffiffiffi

ηc − η
p Þ with b > 0. Hence, it ensues

η�ðLÞ ¼ ηc −
b2

ln2ðL=jlqjÞ
; ð6Þ

for suitable parameters ηc, b (which are q independent)
and lq. Note that this same scaling holds for the position of

the maximum of the fidelity susceptibility at a BKT
transition [72].
The scaling analysis of η�ðLÞ is presented in Fig. 6 for

D̃∞ (L ≤ 30) and for D̃2 (L ≤ 18). The data are described
reliably by Eq. (6), which yields the following estimates for
the critical point at unit filling: ηc ¼ 0.296� 0.006 from
D̃∞ and ηc ¼ 0.291� 0.011 from D̃2. Both values are
compatible with each other and in perfect agreement with
previous estimates. The maximum value of the derivatives
seems to be finite for L → ∞ (inset of Fig. 6), which has
similarly been observed for the fidelity susceptibility at a
BKT transition [72]. The scaling of the GFD derivatives
provides a very good level of accuracy in the location of the
critical point already from the analysis of modest system
sizes. Furthermore, D̃∞ is simply the value of the intensity
jhνjΨðηÞij2 in log scale; hence, we have demonstrated that
the MI-SF transition can be characterized by monitoring
only one wave function amplitude in the exponentially
large Fock space [73].
We have provided evidence of the significance of many-

body multifractality in Fock space for bosonic systems. In
particular, we have shown that the superfluid to Mott
insulator transition in the Bose-Hubbard Hamiltonian
(BHH) can be understood in terms of the rate of change
of the generalized fractal dimensions (GFDs) with the
interaction strength. Such novel perspective provides an
efficient method to locate accurately the critical point using
moderate system sizes. Remarkably, it furthermore reveals
that the transition at integer densities can be analyzed from
the examination of only one privileged (maximum) wave-
function intensity. This observation opens a promising path
for further theoretical and experimental studies of the BHH.
We also note that the η dependence of the information
entropy has been used to characterize the statistical nature
of the BHH eigenstates [74] and to identify chaotic
behavior [75]. Additionally, first results indicate that multi-
fractality extends to the excited states, whose GFDs also
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The inset shows the maximum value of the derivatives versus L.
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carry apparently a fingerprint of the transition. Whereas the
rather expected absence of localization in Fock space has
been confirmed, it remains to be seen whether (many-body)
Fock-localized phases exist for the disordered BHH.
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[40] J.-M. Stéphan, G. Misguich, and V. Pasquier, Phys. Rev. B

84, 195128 (2011).
[41] Y. Y. Atas and E. Bogomolny, Phys. Rev. E 86, 021104

(2012).
[42] Y. Y. Atas and E. Bogomolny, Phil. Trans. R. Soc. A 372,

20120520 (2014).
[43] D. J. Luitz, F. Alet, and N. Laflorencie, Phys. Rev. Lett. 112,

057203 (2014).
[44] G. Misguich, V. Pasquier, and M. Oshikawa, Phys. Rev. B

95, 195161 (2017).
[45] J. Carrasquilla, S. R. Manmana, and M. Rigol, Phys. Rev. A

87, 043606 (2013).
[46] S. Ejima, H. Fehske, and F. Gebhard, Europhys. Lett. 93,

30002 (2011).
[47] While exponential localization implies vanishing Dq for all

q > 0, nonexponentially localized states may exhibit
Dq ≠ 0 for some q < 1, such as those in a generalized
Rosenzweig-Porter random matrix model [8].

[48] H. Hentschel and I. Procaccia, Phys. D Nonlinear Phenom.
8, 435 (1983).

[49] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A.
Sen, and U. Sen, Adv. Phys. 56, 243 (2007).

PHYSICAL REVIEW LETTERS 122, 106603 (2019)

106603-5

https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1016/S1049-250X(06)53002-2
https://doi.org/10.1016/S1049-250X(06)53002-2
https://doi.org/10.1016/0370-1573(87)90110-4
https://doi.org/10.1103/PhysRevE.54.3221
https://doi.org/10.1088/1742-5468/2009/12/L12001
https://doi.org/10.1088/1742-5468/2009/12/L12001
https://doi.org/10.1103/PhysRevE.85.046208
https://doi.org/10.1103/PhysRevE.85.046208
https://doi.org/10.1088/1367-2630/17/12/122002
https://doi.org/10.1088/1751-8121/aaa011
https://doi.org/10.1103/PhysRevLett.93.254102
https://doi.org/10.1103/PhysRevLett.93.254102
https://doi.org/10.1103/PhysRevLett.94.244102
https://doi.org/10.1103/PhysRevLett.94.244102
https://doi.org/10.1103/PhysRevE.82.046206
https://doi.org/10.1103/PhysRevE.82.046206
https://doi.org/10.1103/PhysRevLett.112.234101
https://doi.org/10.1103/PhysRevLett.112.234101
https://doi.org/10.1103/PhysRevE.92.032914
https://doi.org/10.1088/0022-3719/16/6/007
https://doi.org/10.1103/PhysRevB.33.7310
https://doi.org/10.1142/S021797929400049X
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevB.84.134209
https://doi.org/10.1103/PhysRevB.91.184206
https://doi.org/10.1103/PhysRevB.91.184206
https://doi.org/10.1103/PhysRevB.96.134202
https://doi.org/10.1103/PhysRevB.96.134202
https://doi.org/10.1126/science.1183640
https://doi.org/10.1126/science.1183640
https://doi.org/10.1103/PhysRevLett.111.066601
https://doi.org/10.1103/PhysRevLett.111.066601
https://doi.org/10.1088/1367-2630/16/1/015022
https://doi.org/10.1088/1367-2630/16/1/015022
https://doi.org/10.1103/PhysRevB.89.205108
https://doi.org/10.1103/PhysRevB.89.205108
https://doi.org/10.1103/PhysRevB.91.085427
https://doi.org/10.1103/PhysRevB.91.085427
https://doi.org/10.1103/PhysRevB.99.081201
https://doi.org/10.1103/PhysRevB.99.081201
https://doi.org/10.1103/PhysRevLett.117.156601
https://doi.org/10.1103/PhysRevB.94.184203
https://doi.org/10.1103/PhysRevB.94.184203
https://doi.org/10.1103/PhysRevLett.118.166801
https://doi.org/10.1103/PhysRevLett.118.166801
https://doi.org/10.1103/PhysRevB.96.214204
https://doi.org/10.1103/PhysRevB.96.214204
https://doi.org/10.1016/j.aop.2017.12.009
https://doi.org/10.1016/j.aop.2017.12.009
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1088/1742-5468/2016/07/073301
https://doi.org/10.1103/PhysRevB.96.214205
https://doi.org/10.1103/PhysRevB.96.104201
https://doi.org/10.1103/PhysRevB.96.104201
https://doi.org/10.1103/PhysRevB.80.184421
https://doi.org/10.1103/PhysRevB.82.125455
https://doi.org/10.1103/PhysRevB.82.125455
https://doi.org/10.1103/PhysRevB.84.195128
https://doi.org/10.1103/PhysRevB.84.195128
https://doi.org/10.1103/PhysRevE.86.021104
https://doi.org/10.1103/PhysRevE.86.021104
https://doi.org/10.1098/rsta.2012.0520
https://doi.org/10.1098/rsta.2012.0520
https://doi.org/10.1103/PhysRevLett.112.057203
https://doi.org/10.1103/PhysRevLett.112.057203
https://doi.org/10.1103/PhysRevB.95.195161
https://doi.org/10.1103/PhysRevB.95.195161
https://doi.org/10.1103/PhysRevA.87.043606
https://doi.org/10.1103/PhysRevA.87.043606
https://doi.org/10.1209/0295-5075/93/30002
https://doi.org/10.1209/0295-5075/93/30002
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1080/00018730701223200


[50] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M.
Rigol, Rev. Mod. Phys. 83, 1405 (2011).

[51] K. V. Krutitsky, Phys. Rep. 607, 1 (2016).
[52] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.

Fisher, Phys. Rev. B 40, 546 (1989).
[53] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.

Bloch, Nature (London) 415, 39 (2002).
[54] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen,

S. Folling, L. Pollet, and M. Greiner, Science 329, 547
(2010).

[55] S. Rachel, N. Laflorencie, H. F. Song, and K. Le Hur, Phys.
Rev. Lett. 108, 116401 (2012).

[56] M. Gerster, M. Rizzi, F. Tschirsich, P. Silvi, R. Fazio, and S.
Montangero, New J. Phys. 18, 015015 (2016).
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