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We show that the spin-orbit coupling (SOC) in α-MnTe impacts the transport behavior by generating an
anisotropic valence-band splitting, resulting in four spin-polarized pockets near Γ. A minimal k · pmodel is
constructed to capture this splitting by group theory analysis, a tight-binding model, and ab initio
calculations. The model is shown to describe the rotation symmetry of the zero-field planer Hall effect
(PHE). The PHE originates from the band anisotropy given by SOC, and is quantitatively estimated to be
25%–31% for an ideal thin film with a single antiferromagnetic domain.
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Antiferromagnets (AFMs) have been considered as a
promising candidate for next-generation spintronic devices
due to their scalability, their robustness against external
magnetic fields, and their ultrafast spin dynamics [1–7].
Without a net magnetization, conventional means to detect
and manipulate a ferromagnetic order usually cannot be
directly employed in AFMs, which hinders their device
applications. Recently, spin-orbit coupling (SOC) was
experimentally shown to enable the detection and manipu-
lation of the Néel-vector orientation in easy-plane AFMs
[8–11], and therefore became the centerpiece of antiferro-
magnetic spintronics. SOC is known to induce spin mixing
and band splitting, leading to unique magnetotransport
signatures. The locking between electron spin and momen-
tum under SOC results in uniform spin accumulation: the
spin-galvanic effect [12]. This effect in some antiferro-
magnets has been shown to exert opposite spin-orbital
torques on antiparallel local spins, and thereby switches the
Néel vector [8,10,11].
SOC can also lead to anisotropic magnetoresistance

(AMR) and the planar Hall effect (PHE) [13–18]. In ferro-
magnetic transitionmetals and alloys, PHE is known to result
from the s-d mixing given by SOC [14,19]. Although the
exact outcome of SOC is strongly material dependent, AMR
and PHE are usually proportional to ðM · jÞ2, and therefore
occur in both ferromagnets (FMs) and AFMs [1]. These
effects have been experimentally demonstrated in many
metallic and semiconducting AFMs, and are considered as
a robust method to read out the information encoded in the
antiferromagnetic order [8,10,11,20].
Among many AFMs, α-MnTe is particularly attractive

both in terms of fundamental physics and device applica-
tions [21]. Bulk α-MnTe is a p-type semiconductor with a

Néel temperature of TN ≈ 310 K [22–25]. Because of the
semiconducting nature, it is convenient to engineer the
band alignment and the position of the Fermi level.
The Néel vector has three coplanar easy axes, which can
naturally encode three-state digital information [23]. In the
case of multidomain, the most populated Néel-vector
direction can be easily rotated by either field cooling or
an applied magnetic field as small as 3 T [9]. These
advantages make α-MnTe an attractive candidate material
and a convenient building block for antiferromagnetic
devices and other related studies.
In this Letter, we seek to theoretically understand the

SOC in α-MnTe, and to construct a minimal model that
captures the magnetotransport behavior in the case of a thin
film. The zero-field PHE is shown to originate from the
valence-band anisotropy near Γ induced by SOC. The PHE
percentage is shown to maximize above the band crossing,
and is estimated to be 25%–31% by a semiclassical
transport calculation based on ab initio bands.
The ground-state magnetic order of α-MnTe and the

band structure are captured by first-principles calculations.
α-MnTe has a typical NiAs atomic structure as shown in
Figs. 1(a) and 1(b). The lattice constant is relaxed to a1;2 ¼
4.090 and a3 ¼ 6.430 Å, ∼1% smaller than the values
observed in x-ray diffraction [9]. We will use the relaxed
values for the rest of the Letter. The impact of the lattice
constants will be discussed in the Supplemental Material
Sec. I [26]. EachMn atom possesses a local spin moment of
4.40 μB, indicating S ¼ 5

2
high spin state, which is con-

sistent with previous studies [24,25,27]. These spins are
known to align ferromagnetically within each Mn layer,
whereas the layers stack antiferromagnetically along ẑ
[direction (001)]. The antiferromagnetic phase is found
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to be 774 meV lower in energy than the ferromagnetic
phase, indicating an interlayer antiferromagnetic order as
the ground state.
The band structure near the valence band top is strongly

affected by SOC. As shown in Figs. 1(c)–1(e), the valence
band top is found to be at the A point without SOC, which
is ∼0.05 eV higher than the Γ point. This is consistent with
the pioneering calculations done by Podgòrny et al. [28]
and Wei et al. [29]. Once SOC is included, the configu-
ration with in-plane spin along x̂ [shown in Fig. 1(b)] or the
other two equivalent directions has the lowest energy,
suggesting that the easy axes are consistent with the recent
experiment [9]. With this magnetic order, C3 rotation about
ẑ is no longer a symmetry operation so that the Γ-M-K-Γ
paths are not identical. This will be explained in detail by
the group-theory analysis later. Two representative paths
are chosen to demonstrate the band anisotropy, as shown in
Fig. 1(f). The most significant SOC splitting occurs in the
valence band near the Γ point, as denoted by the red arrow
in Fig. 1(d). This splitting shifts the band top from the A
point to the Γ → K1 ¼ ð− 1

3
; 2
3
; 0Þ line, which is now

∼0.1 eV higher. Cryogenic magnetotransport therefore
should be dominated by this band, which is formed by
the antibonding of the pz orbitals of Teð5pÞ sitting on
different sublattices, as illustrated by the partial charge
density in Fig. 1(g). No band splitting shows up in the
conduction band, which is dominated by the emptyMnð3dÞ
3z2 − r2 orbital. The above calculations are carried out
using project augmented wave pseudopotential (PAW) [30]
implemented in VASP [31,32]. The generalized gradient
approximation (GGA) in Perdew, Burke, and Ernzerhof
(PBE) [33] is used as the exchange-correlation energy for
structure optimization, whereas the hybrid functional
(HSE06) is applied for the calculation of the total energy.
This functional computes the exact Fock energy and is
known to avoid underestimation of band gaps in certain
systems [34,35]. See Sec. II in Supplemental Material [26]
for the comparison between the calculated band structure
and experimental data from different sources. The k points
are sampled on a Γ-centered 13 × 13 × 8 mesh, and an
energy cutoff of 400 eV is used throughout all calculations.
To analytically understand the impact of SOC, a minimal

effective Hamiltonian describing the long-wavelength
behavior is constructed. The NiAs structure of α-MnTe
has the space group P63=mmc (No. 194). Therefore, the
point-group symmetry should be D6h [36] without consid-
ering the magnetic order. However, once an in-plane easy
axis is selected by the Mn spin, the C3 symmetry about ẑ is
broken, and the point group D6h is reduced to its subgroup
D2h. This group contains inversion (I) and three mirror
operations with respect to xy, yz, and zx planes, respec-
tively. The combination of inversion and mirror leads to
three C2 operations with respect to the x, y, and z axes,
respectively. The double group of D2h has 10 irreducible
representations, grouped into 5 pairs with opposite parities.
The character table of these representations is shown in
the Supplemental Material Sec. III [26]. Since the valence
band is formed by the antibonding between two pz orbitals
of Te, basis jϕ1i ¼ ð1= ffiffiffi

2
p ÞðpzA þ pzBÞj↑i and jϕ2i ¼

ð1= ffiffiffi
2

p ÞðpzA þ pzBÞj↓i expand a Γþ
5 irreducible represen-

tation of D2h, where the superscript “þ” denotes the even
parity.
The effective Hamiltonian in this sub-Hilbert space

can be constructed by the theory of invariants [37].
Given Γþ

5 × Γþ
5 ¼ Γþ

1 ⊕ Γþ
2 ⊕ Γþ

3 ⊕ Γþ
4 , ĤðkÞ ¼P

γ aγ
PjΓγ j

k¼1 h
γ
kðkÞð

P
2
i;j¼1 C

γ
ij;kjϕiihϕjjÞ, where hγkðkÞ

and jΓγj are the basis and dimension of representation
Γγ, respectively. Coefficients faγg are free parameters that
cannot be dictated from the symmetry analysis. Cij;k are the
Clebsh-Gordan (CG) coefficients available in Ref. [38].
The lowest order basis of Γþ

2 and Γþ
4 are kzkx and kykz,

respectively. Because we are focusing on the transport
signature in MnTe thin film, the z direction is modeled as
a quantum well state, in which hkzi ¼ 0 and hk2zi ¼
ðnπ=dÞ2 ¼ const, where d is the film thickness and n
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FIG. 1. Ab initio band structure for α-MnTe. (a) Top view of the
magnetic unit cell and the choice of coordinate. (b) Three-
dimensional view of the magnetic unit cell. (c) Electron bands
without spin-orbit coupling (SOC), illustrated along the high-
symmetry points of the nonmagnetic primitive cell. The red curve
denotes the spin-degenerate valence band. (d) and (e) The band
structure considering SOC, illustrated along two different loops
in the Brillouin zone shown in (f). The red arrow denotes the
valence band top near Γ. (g) The charge density contributed by
the valence band at Γ. The white dotted line denotes the plane
separating the A-Te and B-Te atoms, where the charge density is
zero. This color contour plot is illustrated in the plane containing
â3 and the two Mn sublattices.
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are integer values labeling different quantum well states.
Since the basis above and their higher order representations
all contain odd orders of kz, Γþ

2 and Γþ
4 do not contribute.

Up to the fourth order of momentum, the relevant basis of
Γþ
3 are kxky, k3xky, kxk3y, and kxkyk2z , where again the last

term can be combined with the first one, treating k2z as a
constant. The CG coefficients are C3

ij;1 ¼ ðσzÞij. For Γþ
1 ,

the CG coefficients are C1
ij;1 ¼ Iij, whose corresponding

Hamiltonian is thus spin independent. The magnetic order
is now fully included. One should use k2 and k4, the basis
of the Γþ

1 representation of D6h instead. Anisotropic
spinless dispersion appears since the 6th order of k, which
is neglected. As a result, we have the generic effective
Hamiltonian given by

ĤðkÞ ¼ k20
2m

�
k̄2 −

1

2
k̄4 − σzðαk̄xk̄y þ β1k̄3xk̄y þ β2k̄3yk̄xÞ

�
;

ð1Þ

where k0, m, α, β1, and β2 are free parameters. The
dimensionless momentum k̄ is defined as k̄ ¼ k=k0, where
k0 sets the length scale. The minus sign of the quartic term
is consistent with the first-principles facts that the splitting
occurs in the valence band. To reveal the microscopic origin
of this effective Hamiltonian, a tight-binding model based
on the 5p orbitals of Te atoms is established. Each Te atom
on the A site is surrounded by 6 B-site nearest neighbors as
shown in Figs. 2(a) and 2(b). Twelve localized atomic
orbitals are used to describe the degrees of freedom given
by two electron spins, two sublattices, and three px;y;z

orbitals. The SOC is included by taking HSO ¼ λL · S as a
perturbative term. The effective Hamiltonian is obtained by
a canonical transformation, expanding up to the first order
of λ. Keeping k to the fourth order, the resulting effective
Hamiltonian is consistent with Eq. (1). See Sec. IV in

Supplemental Material [26] for the details of the kz
quantization in thin films; the details of the tight-binding
model can be found in Sec. V.
The parameters in Eq. (1) can be obtained by fitting the

k · p model to the ab initio bands. Here, the fitting target is
obtained by transferring the plane-wave basis obtained by
VASP into the WANNIER function basis, resulting in a
Hamiltonian of localized atomic orbitals (implemented
byWANNIER90) [39,40]. The fitting parameters are obtained
by machine learning using nonlinear conjugate gradient
regression and golden-section line search, minimizing the
fitting errors near Γ. See Sec. VI in the Supplemental
Material [26] for the details of the machine-learning
algorithm. With the optimized parameters, the k · p bands
are compared to the ab initio bands along Γ → K1 and
Γ → K2, as shown in Figs. 2(c) and 2(d), respectively. The
spin texture of the valence band is shown in Fig. 3(a), where
the band edge splits into four pockets polarized along �z.
Importantly, unlike the conventional spin-orbit coupling,
the spin-dependent term here is quadratic or quartic in
momentum, such that neither time reversal T nor its
combination with fractional translation (T T1=2) is a sym-
metry of the lattice. This therefore leads to nonzero Hall
conductivity even in the absence of external magnetic field.
To capture the zero-field PHE, transport behavior induced

by the valence-band splitting is studied. Scattering centers
induced by vacancies of Mn atoms are considered. Magnetic
moments of these impurities point in ηx̂ directions, where
η ¼ �1, denoting two sublattices. The impurity potential is
thus written as V̂ ¼ P

fi;ηgv0ðaþ bησxÞδðr − RiηÞ, where
Riη are positions of magnetic impurities, whereas a and b
are spin-independent and spin-dependent scatterings, respec-
tively. The current operator along any direction n̂,
j ¼ n̂ · ð∂Ĥ=∂kÞ, is diagonal so that no interband transition
occurs. Intrinsic Berry phase contribution is thus absent. In
the diffusive regime with low impurity concentration, the
conductivity can be derived by the Kubo-Streda formula

σθE⊥ðkÞ ¼
ℏ
2π
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FIG. 2. (a) Atoms that are close to the central Te for a bulk α-
MnTe. The red circles label the first-nearest Te atoms used in
the tight-binding model. (b) The atomic structure used for the
tight-binding model. Each A-site Te is surrounded by six first-
nearest B-site ones. (c) and (d) The comparison between the k · p
model and the WANNIER model from the ab initio calculation.
The parameters are k0 ¼ 0.162 Å−1, α ¼ −6.62, β1 ¼ 0.202,
β2 ¼ 1.191, and ðk20=2mÞ ¼ 0.023 eV, as defined in Eq. (1). The
comparison is illustrated along the paths Γ → K1 and Γ → K2 as
denoted in Fig. 1(f).
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FIG. 3. Planar Hall effect percentage as a function of θE , the
angle between the uniform current and the in-plane Néel vector.
(a) The full 3D band structure near Γ obtained from the WANNIER

model. (b) Illustration of the Néel vector (along x̂), the applied
electric field (green arrow) and three in-plane easy axes (orange
dashed line). This is a top view of Fig. 2(a). (c) The Hall
percentage obtained from transport calculations.
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where jk and j⊥ are current operators in the parallel and
perpendicular directions with respect to the electric field
direction, as shown in Fig. 3(b). Given θE as the angle
between the electric field E and x̂, jθEk ¼ jx cos θE þ
jy sin θE , and jθE⊥ ¼ −jx sin θE þ jy cos θE . GR;A ¼
½ðGR;A

0 Þ−1 − ΣR;A�−1 is the retarded (advanced) Green func-
tion. In the Born approximation, ΣR;A ¼ hV̂i þ hV̂GR;AV̂i,
where h� � �i is the impurity average. Assuming the two Mn
sublattices have the same impurity concentration ni, one
obtains hV̂i ¼ 2aniv0, which is just a constant absorbed by
the Fermi energy. Therefore, ΣR;A ¼∓ i=2τ, with the relax-
ation time τ−1 ¼ π−1niv20ða2 þ b2Þ R d2qδ½ϵF − ϵsðqÞ�.
Although the Dirac delta function is explicitly spin depen-
dent, the integral over momentum is actually not. This is
due to the special band shape: ϵþðq; θÞ ¼ ϵ−ðq;−θÞ. τ is
thus spin independent even if ΣR;A is solved self-consis-
tently, as will be shown in the Supplemental Material
Sec. VII [26]. The PHE percentage is defined by
½σ⊥ðθEÞ=σkðθEÞ� × 100%, which does not depend on τ,
ni, or v0. The numerical result using the k · p model is
shown in Fig. 3(c) for ϵF ¼ ϵV − 0.01 eV. Amajor result is
the twofold rotational symmetry of the PHE percentage,
rather than threefold as suggested by the lattice. This C2

symmetry originates from the D2h point group brought
down fromD6h due to themagnetic anisotropy as discussed
before. Particularly, both the PHE percentage and the Hall
conductivity σ⊥ðθεÞ are vanishing at θE ¼ nπ=2. At these
angles, the mirror reflection about the plane containing ẑ
and electric field is a symmetry operation, which rules out
the Hall effect.
The above transport analysis is based on the minimal k · p

model and a constant relaxation time. To show the quanti-
tative accuracy, this result is now compared to the one given
by the Boltzmann transport equation (BTE) using the full
ab initio band. In general, such an effort is necessary to
handle the full anisotropic band structure [41,42]. Assuming
uniform current distribution and a steady state, BTE is
simplified as −eE ·∇pf¼ð∂f=∂tÞjcoll. Here, fðkÞ¼fk0 þfk1
is the total distribution function, and fk1 denotes the
nonequilibrium part. Assuming fk1 ¼ gk½−ð∂f0=∂ϵFÞ�≈
gkδðϵ − ϵFÞ, detailed balance requires −eE · vk ¼P

k0 ðgk − gk0 ÞSk0k, where Sk0k is the transition rate from
k to k0. Here, we consider two types of scattering
mechanisms: the spinless Coulomb scattering and the
exchange-induced spin-dependent scattering, ξ ¼
ðNS=NCÞ, which is the concentration ratio between these
two types of impurities. Here the transition rate sums over all
considered scattering types, Sk0k ¼ P

αS
α
k0k, where Sαk0k ¼

ð2πNα=ℏÞjHα
k0kj2δðϵk − ϵk0 Þ, and Hα

k0k is the Hamiltonian
that scatters k to k0. The scattering rate is evaluated between
the full-band eigenstates generated by WANNIER90. With
a bit algebra, we obtain gk ¼ τk0 ð

P
k0Sk0kgk0 − eE · vk0 Þ,

where τk0 ¼ ðPk0Sk0kÞ−1. Note that the anisotropy of

transport is fully absorbed by gk without assuming a
constant relaxation time. After discretizing the Brillouin
zone with a mesh of 250 × 250, gk can be solved through a
linear system. The PHE percentage is defined as PHE ¼
ðPk f

k
1v

k⊥=
P

k f
k
1v

k
kÞjϵF × 100%, which is compared to the

k · p result given by Eq. (2) near the valence band edge
[Fig. 3(c)]. Both transport models capture a C2 rotation
symmetry instead of C3. The solution of fk1 at four different
ϵF positions (i)–(iv) are shown in Fig. 4(a). A full scan of ϵF
and the impurity concentration ratio ξ is then carried out,
with the result shown in Fig. 4(b). The PHE percentage is
numerically estimated to be 25%–31% above the band
crossing. Changing ξ for several orders of magnitude
does not change this percentage, suggesting that the ratio
between the spin-dependent and independent scattering is
not important. This originates from the special band shape
ϵþðq; θÞ ¼ ϵ−ðq;−θÞ as discussed before. Further details of
this discussion can be found in Supplemental Material
Sec. VIII [26]. The current direction that maximizes PHE
[θmax

E ¼ arg maxθEPHEðϵFÞ] is shown in Fig. 4(c) for
different ϵF positions. The value of θmax

E varies between
45°–54° for a wide range of energy, which is determined by
the details of the band shape.
The k · p Hamiltonian given by Eq. (1) is not only

effective, but also minimal. The quartic spin-orbit coupling
term is necessary, in the absence of which, the extra C4T
symmetry of the quadratic spin-orbit coupling term
ðkxkyσzÞ rules out the Hall conductivity. The kz ¼ 0
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approximation assumes that the transport is dominated by
the first subband in a thin film of only a couple of unit cells.
It is required to use a full bulk Hamiltonian to capture the
crossover from 2D to 3D, which calls for future inves-
tigations. The linear-system solution of BTE used above is
generic to include arbitrary combinations of elastic scatter-
ing mechanisms. This allows for a single-step calculation of
the full-band nonequilibrium distribution without requiring
self-consistent iterations. The PHE percentage estimated by
this calculation is more than 1 order of magnitude greater
than that observed in experiments, suggesting a vast space
to improve the device performance by engineering the ϵF,
applying currents along θmax

E , or by scaling down the device
to the limit of a single antiferromagnetic domain.
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Note Added in Proof.—It has been pointed out that the
detail of the valence band edge is sensitive to the choices of
the lattice constants, which are temperature dependent
according to early experiments [43]. This might affect
the details of the band-edge landscape and the transport
behavior. The band structure in this Letter is based on zero-
temperature relaxed lattice constants, and the transport
analysis is self-consistent in this regime. Detailed study of
temperature-dependent behaviors invites further computa-
tional and experimental investigations.
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