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Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to special
“magic angles” at which isolated and relatively flat bands appear. However, until now the origin of the
magic angles and their irregular pattern have remained a mystery. Here we report on a fundamental
continuum model for TBG which features not just the vanishing of the Fermi velocity, but also the perfect
flattening of the entire lowest band. When parametrized in terms of α ∼ 1=θ, the magic angles recur with a
remarkable periodicity of Δα ≃ 3=2. We show analytically that the exactly flat band wave functions can be
constructed from the doubly periodic functions composed of ratios of theta functions—reminiscent of
quantum Hall wave functions on the torus. We further report on the unusual robustness of the
experimentally relevant first magic angle, address its properties analytically, and discuss how lattice
relaxation effects help justify our model parameters.
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Introduction.—The recent discovery of correlated insu-
lation and seemingly unconventional superconductivity in
twisted bilayer graphene (TBG) [1–3] has revived interest in
TBG [4–28]. Importantly, these phenomena are observed in a
narrow range of twist angles near 1.05°, i.e., the first magic
anglewhere the isolated and relatively flat band appear near
neutrality [29–33]. To date, the origin and recurrence of the
magic angles is not clear, even whether it is a fundamental
feature or an outcome of engineering material parameters.
Belowwe show that the appearance of the exactly flat band is
a fundamental feature, with a remarkable mathematical
structure that is exposed in this Letter.
Twographene sheets rotated (“twisted”) by a small relative

angle form a long-periodic moiré pattern. For small angles θ,
the distinction between commensurate and incommensurate
structures can be ignored, giving the lowest branch of moiré
periods as LðθÞ ¼ a0=2 sin θ=2 (a0 is graphene lattice
constant). The electronic structure of small-angle TBGs
was previously addressed by Bistritzer and MacDonald
[29]who reported band flattening and introduced the concept
of magic angles (see also Refs. [30–32,34] and [35–37]).
Recently, several groups have used the continuummodel and
studied the role of topology of flat bands near the magic
angles [4,6,13,19,21,38–41]. Currently, the nature of super-
conductivity in this system is still beingdebated; however it is
clear that the flat bands emerging at themagic angles are key.
However, despite recent advances, the origin of the magic
angles and flat bands in TBG remains mysterious.
In this Letter, we consider a continuum model, which is

parametrized by interlayer coupling parameters wAA and
wAB for AA and AB bilayer stacking, respectively. Earlier
studies [29,30,32,34] set wAA ¼ wAB, which gives band
flattening in the gapless model. In reality, for TBG at tiny
twist angles the gap opens and also wAA=wAB is suppressed

due to lattice relaxation effects [21,38,42]. As an ideali-
zation, we consider a continuum model with wAA ¼ 0 that
acquires a chiral symmetry (a unitary particle-hole sym-
metry). In this chirally symmetric continuum model we
switch off AA coupling completely but keep AB and BA
finite, and to our surprise a number of physical phenomena
reveal at the magic angles. Not only do the Fermi velocities
of the moiré Dirac points vanish, the entire band becomes
perfectly flat at the recurrent set of magic angles (see
Fig. 1). The sequence of magic angles that we find reveals a
remarkable asymptotic periodicity of Δα ≃ 3=2 which is
not present in the wAA ¼ wAB case (see Table I). Moreover,
the band gap is maximized at the same set of angles. We
conclude that because of its remarkable properties, this is
the fundamental model that concisely captures the magic
angle phenomena. The flatness at magic angles is not just a
matter of engineering material properties, but has deep
hidden analytical connections to quantum Hall wave
functions [43] and index theorems which we reveal.
Continuum model for twisted bilayer graphene.—The

continuum model describing a single valley of TBG
considers two layers of graphene described by Dirac fields
at K, K0 points of the moiré (mini) Brillouin zone (mBZ),
each rotated by an angle �θ=2, and coupled through moiré
potential TðrÞ [4,13,29,34]:

H ¼
�−iv0σθ=2∇ TðrÞ

T†ðrÞ −iv0σ−θ=2∇

�
; ð1Þ

where σθ=2 ¼ e−ðiθ=4Þσzðσx; σyÞeðiθ=4Þσz , ∇ ¼ ð∂x; ∂yÞ and

TðrÞ ¼ P
3
n¼1 Tne−iqnr, where q1 ¼ kθð0;−1Þ, q2;3 ¼

kθð�
ffiffiffi
3

p
=2; 1=2Þ are responsible for the moiré pattern

structure with the modulation kθ ¼ 2kD sinðθ=2Þ; here
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kD ¼ 4π=ð3a0Þ is the Dirac momentum. The Hamiltonian
(1) acts on the spinor ΦðrÞ ¼ ðψ1; χ1;ψ2; χ2ÞT and the
indices 1,2 represent the graphene layer. The symmetries of
TBGs allow interlayer coupling of the form

Tnþ1 ¼wAAσ0þwABðσx cos nϕþσy sin nϕÞ; ϕ¼ 2π=3:

Because of energetically preferred Bernal stacking at zero
twist, the relative strength wAA=wAB is suppressed at tiny
angles [38]; thus the fundamental features of the TBGs can
be expected when only wAB is present.
Chirally symmetric continuum model.—In this Letter,

we study a pristine model of Eq. (1) with wAA ¼ 0. First,
one can eliminate the twists in kinetic terms, σ�θ=2 → σ
by rotating the spinors. Then, by reshuffling the spinor to

ΦðrÞ ¼ ðψ1;ψ2; χ1; χ2ÞT, the chirally symmetric model
reads

H¼
�

0 D�ð−rÞ
DðrÞ 0

�
; DðrÞ¼

�
−2i∂̄ αUðrÞ

αUð−rÞ −2i∂̄
�
;

ð2Þ

where ∂̄ ¼ 1
2
ð∂x þ i∂yÞ and UðrÞ ¼ e−iq1r þ eiϕe−iq2rþ

e−iϕe−iq3r. Note that Hamiltonian H has only one dimen-
sionless parameter α ¼ wAB=ðv0kθÞ which fully controls
the physics of the system [44].
Our chirally symmetric Hamiltonian (2) has several

pronounced properties rooting towards the fundamental
nature of the magic angles in TBGs. First, due to particle-
hole symmetry, fH; σz ⊗ 1g ¼ 0, the band structure of this
Hamiltonian is symmetric with respect to ε ¼ 0. Second,
the entire lowest band becomes absolutely flat (that is, with
zero bandwidth in the entire mBZ) at the recurrent values of
α corresponding to the magic angles θ of this model (see
Fig. 1). Moreover, the band gaps are maximized for the
magic α where the bandwidth is exactly zero. For example,
the first magic angle of our model is given by α1 ≈ 0.586,
which corresponds to θ ≈ 1.09° on taking wAB ¼ 110 meV
and 2v0kD ¼ 19.81 eV. Finally, we report that the magic
angles in our model follow a remarkable recurrence with
period Δα ≃ 3=2 (see Fig. 2) which saturates very fast. We
note, however, in the continuum models with finite AA
coupling (wAA ≠ 0), this feature is smeared away and the
pattern is lost for large wAA. The fundamental features of
the absolutely flat bands, the pronounced band gaps, and
the very strong periodicity in magic angles of the chirally
symmetric continuum model (2) indicate that this model
captures the origin of the magic angles in the most precise
way. Previously the magic angles were defined as twists for
which the Fermi velocity vanishes in Dirac points. Instead,
we redefine the notion of magic angles (at arbitrary wAA)
as twists where the bandwidth is minimized (useful for
numerics at wAA ≠ 0). A striking result of this Letter is not
just the vanishing of the Fermi velocity, but the flattening
of the entire lowest band in the limit wAA → 0. Below we
reveal the absolutely flat band solution in TBG is linked to
flatness of the lowest Landau level in quantum Hall effect
on torus [43].
Absolutely flat bands.—We start from an observation that

the TBG model (2) always has two zero modes at points K
andK0 of themBZ, for allα. This is due to a symmetry feature
DðRϕrÞ ¼ ωDðrÞwhich holds for all α, where Rϕ denotes a
counterclockwise rotation by ϕ ¼ 2π=3 and ω ¼ eiϕ. It is
possible to construct an operatorR ¼ uϕeϕr×∂r, with diago-
nal matrix uϕ ¼ diagð1; e−iϕÞ, which commutes with the
Hamiltonian ½R;HðrÞ� ¼ 0. Therefore, each eigenfunction
of Hamiltonian H can be uniquely labeled by C3 rotation
eigenvalue: 1, ω, ω�. We now consider case α ¼ 0, for
which Hamiltonian (2) has four zero modes: two from

(a) (b) (c)

(d)

(e)

FIG. 1. Absolutely flat bands in continuum TBG Hamiltonian
(1) with wAA ¼ 0 appear at exact magic angles parameters
α ¼ 0.586, 2.221, 3.751, etc. (Here α ¼ wAB=2v0kD sin θ=2
and energy in units wAB=α). On subfigures (a)–(c), the band is
numerically flat to an accuracy 10−16. (d) Moiré Brillouin zone.
(e)–(f) The band width drops exactly to zero at the set of magic
angles. At the same points, we observe maxima of the band gaps.

TABLE I. Magic angles in models with wAA ¼ 0 and
wAA ¼ wAB. Only the principal magic angles α1 coincide.

α1 α2 α3 α4 α5

wAA ¼ 0 (here) 0.586 2.221 3.75 5.28 6.80
wAA ¼ wAB ([29]) 0.606 1.27 1.82 2.65 3.18
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each Dirac points. Dirac points K and K0 differ in their C3

rotation eigenvalue: ω, and ω� see, e.g., Ref. [4]. Since R
also commutes with the particle-hole transformation,
½R; σz ⊗ 1� ¼ 0, we can consider each zero mode of K
(or K0) individually. Turning on α > 0 gradually, which
preserves symmetry, each zero modes being unique must
remain at zero energy.
Using the fact that there are always zero modes in some

points of mBZ, we now explain the origin of the absolutely
flat band in our model (HΦkðrÞ ¼ ε0ðkÞΦk; ε0ðkÞ ¼ 0).
The appearance of the perfectly flat band at the set of magic
angles implies that the zero-energy equation [see Eq. (2)]

DðrÞψkðrÞ ¼ 0 ð3Þ

has solutions for arbitrary momenta k in the mBZ, and the
two component wave function ψkðrÞ should obey the
double-periodic moiré boundary conditions on translation
vectors a1;2 ¼ ð4π=3kθÞ½�ð ffiffiffi

3
p

=2Þ; 1
2
�,

ψkðrþa1;2Þ¼ eika1;2UωψkðrÞ; Uω¼ diagð1;ω�Þ: ð4Þ

As explained above, Eq. (3) has always the zero-mode
solution ψKðrÞ at Dirac point K with the property
ψKðrþ a1;2Þ ¼ uϕψKðrÞ. The kinetic part of operator
DðrÞ is completely antiholomorphic (that is, contains only
∂̄ but no ∂). Thus one can multiply the zero mode solution
ψKðrÞ by any complex function fðzÞ of single variable
z ¼ xþ iy,

ψkðrÞ ¼ fkðzÞψKðrÞ: ð5Þ

It is possible to find a function fkðzÞ obeying moiré
boundary conditions fkðzþ a1;2Þ ¼ eika1;2fkðzÞ with
a1;2 ¼ ða1;2Þx þ iða1;2Þy. Such a function fkðzÞ must have
a simple pole. We stress that in general such a construction
(5) fails to work, as ψkðrÞ is unwillingly singular. The true

“magic” happens exactly at the magic angles (see Fig. 3):
the two-component spinor ψKðrÞ drops to zero at the BA
stacking point ψKðr0Þ ¼ 0, where r0 ¼ 1

3
ða1 − a2Þ. Thus,

we find the flat band solution

ψkðrÞ ¼
ϑðka1=2πÞ−1

6
;1
6
−ðka2=2πÞðz=a1jωÞ

ϑ−1
6
;1
6
ðz=a1jωÞ

ψKðrÞ; ð6Þ

where ϑa;bðzjτÞ is the theta function with rational character-
istics a and b defined as [46]

ϑa;bðzjτÞ ¼
Xþ∞

n¼−∞
eiπτðnþaÞ2e2πiðnþaÞðzþbÞ:

Under this construction, the zeros of ψKðrÞ exactly cancel
zeros of the theta function in the denominator. Using
properties of the theta function [46], one can verify that
solution (6) obeys boundary conditions (4). Therefore,
exactly at the magic angles, where ψKðr0Þ ¼ 0, the wave
functions (6) satisfy the zero-mode Eq. (3) for all momenta
k. Thus we showed that there is a perfectly flat band
ε0ðkÞ≡ 0 in entire mBz. The wave function (6) is
reminiscent of lowest Landau level wave functions on
the torus [43], familiar from the quantum Hall effect. This
connection indicates that the flatness in TBG is not just a
lucky choice of material parameters, but a fundamental
feature of the TBG physics.
Zero mode equation and Fermi velocity.—We now show

that zero Fermi velocity is also connected to the zeros of
wave functions ψKðrÞ appearing at the magic angles. The
zero-mode equation at K point reads DðrÞψKðrÞ ¼ 0 with
spinor ψKðrÞ ¼ ðψK;1;ψK;2ÞT. The renormalized Fermi
velocity can be found through first-order perturbation
theory

vFðαÞ ¼
����∂k

hΦKjVkjΦKi
hΦKjΦKi

����
k¼0

; Vk ¼
�
0 k̄

k 0

�
;

where k, k̄ ¼ ðkx � ikyÞσ0 and ΦKðrÞ ¼ ðψK; χKÞT. This
implies

vFðαÞ ¼
jhψ�

Kð−rÞjψKðrÞij
hψKjψKi

: ð7Þ

Because of the rotational symmetry of DðrÞ discussed
above, one concludes that if ψKðrÞ is a solution to the
equation DðrÞψKðrÞ ¼ 0, then ψKðRϕrÞ is also a solution.
This, in particular, implies at arbitrary α relations
ψK;1ðRϕr� r0Þ ¼ ψK;1ðr� r0Þ and ψK;2ðRϕr� r0Þ ¼
e�iϕψK;2ðr� r0Þ. The second relation means that
ψK;2ðrÞ always vanishes at r ¼ �r0 (i.e., for all α);
however ψK;1ðrÞ is in general nonzero. To relate appear-
ance of zeros in ψKðrÞ to zeros of the renormalized Fermi
velocity, we notice that the Fermi velocity is proportional to
an integral of motion of the operator DðrÞ,

(a) (b)

FIG. 2. Magic angle recurrence: (a) Fermi velocity at K, K0 as a
function of magic angle parameter α (logarithmic scale). The
sequence of the magic angles follows the asymptotic “3=2” rule:
distance between adjacent α’s is “quantized” with Δα ≃ 3=2,
which saturates very fast, see (b).
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vðαÞ ¼ ψK;1ðrÞψK;1ð−rÞ þ ψK;2ðrÞψK;2ð−rÞ; ð8Þ

where vðαÞ does not depend on coordinates and from
Eq. (7) we see that vFðαÞ ∼ vðαÞ. Thus, because
ψK;2ð�r0Þ ¼ 0, we find vFðαÞ ∼ ψK;1ðr0ÞψK;1ð−r0Þ.
Therefore the vanishing of the Fermi velocity vFðαÞ ¼ 0
means that either ψK;1ðr0Þ or ψK;1ð−r0Þ is zero and vice
versa. This is the same argument that gave rise to
appearance of the absolutely flat bands as was shown
previously. Thus vFðαÞ ¼ 0 implies the existence of the
absolutely flat band with wave function Eq. (6). The
appearance of zeros of the Fermi velocity vFðαÞ, and thus
the appearance of flat bands, is not surprising, since vFðαÞ
is just a real function of a single parameter α. By tuning
this parameter, vFðαÞ crosses zero at some value(s) of α.
To trace the appearance of the principal magic angle with
α1 ≈ 0.586 we use perturbation theory in α, and compare
the two definitions of magic angles.
Principal magic angle.—We start from the previous

definition of magic angles [29] as twist angles at
which the Fermi velocity vanishes. One can analyze the
zero mode equation at Dirac point K by using perturbation
theory in magic angle parameter α < 1, so spinor ψKðrÞ
has form

ψKðrÞ ¼
�
ψK;1

ψK;2

�
¼

�
1þ α2u2 þ α4u4 þ…

αu1 þ α3u3 þ…

�
:

In general, one can find unðrÞ step by step up to an arbitrary
order in α. Up to the eighth order we have

vFðαÞ ¼
1 − 3α2 þ α4 − 111α6

49
þ 143α8

294
þ…

1þ 3α2 þ 2α4 þ 6α6

7
þ 107α8

98
þ…

: ð9Þ

Setting vFðαÞ ¼ 0, this expression gives the first magic
angle α1 ≈ 0.587, which is very close to the value α1 ¼
0.586 obtained numerically. Therefore the perturbation
theory for small α quantitively explains the appearance
of α1 and hints to the appearance of the next magic at α ∼ 2.
Note also that up to α2, vF ≈ ð1 − 3α2Þ=ð1þ 6α2Þ,
—similar to what was reported in a model with wAA ¼
wAB [29]. Thus, due to the robustness of the first magic
angle (see Fig. 4), α1 ≈ ð1= ffiffiffi

3
p Þ is valid both for wAA ¼ 0

and wAA ¼ wAB.
Alternatively, the appearance of the first magic angle

could be traced through the new definition as the angle at
which the bandwidth is minimized. In our system, the
bandwidth of the flattened bands is determined by doubled
energy at the center of the mBZ zone (Γ is k ¼ q1 in our
notations). The symmetries of the Hamiltonian (2) imply
that χΓðrÞ ¼ λασxψΓðrÞ, where λα ¼ �1, and one can also
obtain that ψΓ;2ðrÞ ¼ iμαψΓ;1ð−rÞ, where μα ¼ �1. The
spectrum at the Γ point is characterized by the equations
2∂̄ψΓ;1 ∓ αUðrÞψΓ;1ð−rÞ ¼ εΓψΓ;1ð−x; yÞ, where “−”
captures all odd magic angles and “þ” all even.
Perturbatively one has

εΓ ¼ 1 − 2αþ α2

3
þ 2α3

9
þ 5α4

54
þ… ð10Þ

Demanding the zero bandwidth at the first magic angle, we
get α1 ≈ 0.585, which is very close to the numerical result
α1 ¼ 0.586. Thus both in terms of Fermi velocity at Dirac
points or the bandwidth minimization, the principal magic
angle can be calculated very precisely and its value is the
same as reported in experiments.
Tuning the AA coupling strength.—We have proposed a

realistic symmetric model with perfectly flat bands, yet
other models with flattened bands at finite wAA=wAB < 1
can be considered as perturbations around the exactly flat
band model. To explore this, we now turn on AA coupling
back [wAA ≠ 0 in TðrÞ], and still neglect relative rotations
in the kinetic terms σ�θ=2 → σ. We present the numerical
dependence for the gap between the lowest band and the
next excited band at the first two magic angles as a function
of wAA=wAB (see Fig. 4). Tuning on wAA smears out such
fundamental features as zero bandwidth coexisting with
maximized band gap, and the overall pattern of the magic
angles, making higher-order magic angles badly defined.
Importantly, the first magic angle is very robust against
tuning wAA=wAB continuously towards 1, until the band gap
closes. This is a general feature of all magic angles which
are robust until the first gap closing.

FIG. 3. (top) Schematic moiré pattern with regions referred to
in the text marked. (bottom) Wave function density ρKðrÞ ¼
ψ†
KψK in real space for a single zero mode at the Dirac point K:

ρKðrÞ is localized on AA stacking and (exactly at the magic
angles) has zeros on BA stacking.
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Experimentally, due to the lattice relaxation effects
we have at first magic angle wAA=wAB ≃ 0.7–0.8 which
promotes the gap [21,38,42] (see positioning in Fig. 4).
Taking into account the finite gap ∼30 meV observed
experimentally [1,2], our chirally symmetric model is
qualitatively closer to real life than the gapless wAA=wAB ¼
1 model. We also propose the second magic angle to occur
around α2 ≈ 2, which converts to θ2 ≈ 0.22° − 0.29°,
depending on the precise value of wAAðθÞ=wABðθÞ, and
θ2 robust in the range wAA=wAB < 0.2. It would be
interesting to pursue the second magic angle in
experiments.
In conclusion, we introduced a variant of the continuum

model used to describe TBG, and show that the notion of
magic angles acquires a remarkably robust character visible
in several properties including the perfect flatness of the
bands at neutrality. We showed that the emergence of the
flat bands in TBGs is related to the flatness of the lowest
Landau level in quantum Hall effect on torus. Given that
the model has flat bands, the appearance of the principal
magic angle can be precisely traced with perturbation
theory in α. A deeper explanation of the periodic pattern
of higher magic angles would be of great interest to explore
in the future. The chiral model captures the nature of the
flatness phenomena and thus the source of magic angles in
a minimal way, and points to a rich underlying mathemati-
cal structure, further investigations of which is left to
future work.
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