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We show that the interplay between antiferromagnetic interaction and hole motion gives rise to a
topological superconducting phase. This is captured by the one dimensional anisotropic t − J model which
can be experimentally achieved with ultracold polar molecules trapped onto an optical lattice. As a function
of the anisotropy strength we find that different quantum phases appear, ranging from a gapless Luttinger
liquid to spin gapped conducting and superconducting regimes. In the presence of appropriate z anisotropy,
we also prove that a phase characterized by nontrivial topological order takes place. The latter is described
uniquely by a finite nonlocal string parameter and presents robust edge spin fractionalization. These results
allow us to explore quantum phases of matter where topological superconductivity is induced by the
interaction.
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Introduction.—Topological quantum matter has
recently attracted huge interest from different research
fields [1–3]. In this context the presence of gapless
edge modes associated to a gapped bulk [4,5] can give
rise to unique properties like quantized conductance [6–9]
and charge fractionalization [10–12]. Thanks to symmetry
arguments, a full understanding of the aforementioned
features can be obtained for noninteracting systems
allowing us to classify the so called topological insulators
[13,14] and superconductors [15,16]. Crucially this
approach becomes unstable in the presence of interaction
[17] and the concept of symmetry protection can be
exploited to still classify topological phases [18,19]. In
particular it has been proved [20] that, for strongly
correlated systems, the appearance of protected localized
edge states is identified by a finite value of a nonlocal
string order parameter [21]. Furthermore, the latter cap-
tures the hidden antiferromagnetic ordering of some
degrees of freedom (for instance, ↑ and ↓ states of a
spin 1 model), diluted in the background of the others (for
instance, 0 state). A celebrated example of this is the
Haldane phase characteristic of several interacting one-
dimensional models [22–33]. Noticeably these studies all
focus on hidden antiferromagnetism in the presence of a
gapped charge channel, thus describing topological insu-
lating regimes. Therefore finding microscopic interacting
Hamiltonians supporting the presence of nontrivial topo-
logical conducting orders would be of deep and funda-
mental interest. Moreover, this could also possibly lead to
the discovery of further features which differ from the
noninteracting topological case [34]. Because of the fact

that string orders have been measured [35,36], ultracold
quantum systems [37] represent an ideal platform to study
the possible appearance of topological effects in the
presence of interaction. Moreover, the impressive level
of control achieved with such experimental setups has also
allowed us to trap ultracold particles with long-range
dipolar interaction [38]. By means of such a platform,
several spin models [39–41] with spin-spin exchange
processes induced by the dipolar interaction have been
reproduced. At the same time when spin exchange is also
associated to particle motion one gets a hybrid spin chain,
namely, the t − J model [42–44]. This Hamiltonian has its
own special relevance because it gives a proper descrip-
tion of quantum magnetism [45,46] and high energy
processes [47]. Furthermore, since the interplay between
hole motion and antiferromagnetism, peculiar of cuprate
superconductors [48] is properly captured by the t − J
Hamiltonian, the latter represents a fundamental model
where high Tc superconductivity can be studied [49].
Importantly, it has to be underlined that since the t − J
model arises from the strong coupling limit of the
Hubbard model, only a small portion of the phase diagram
can be reliably investigated, namely, the one where J is
isotropic and J ≪ t. However, thanks to the possibility
to trap systems of ultracold fermionic polar molecules
[50–53] an anisotropic version of the t − J model with
independently tunable coupling constants can be achieved
[54], thus allowing us to explore the full phase diagram.
Motivated by such a possibility in this Letter we explore

the intriguing interplay between superconductivity and
topological orders occurring in the t − Jz − J⊥ model.
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Our analysis, based on the bosonization technique [55] and
the density-matrix-renormalization-group (DMRG) algo-
rithm [56], allows us to derive a rich phase diagram as a
function of the antiferromagnetic anisotropy and the
particle density. As shown in Fig. 1, besides a phase
separated (PS) state, it amounts to a gapless Luttinger
liquid (LL) phase and two spin gapped phases, one with
trivial and one with nontrivial topological features. The
latter is characterized by both a finite value of a string order
parameter and by the appearance of degenerate fraction-
alized edge modes detected by the edge magnetization.
Relevantly, by varying the anisotropy parameter Jz, we also
find that superconducting orders can become dominant.
Indeed in the spin-gapped phase with nontrival topology
these manifest as leading triplet superconducting correla-
tions, thus providing a first framework to realize topologi-
cal superconductivity solely induced by interaction.
Model.—As derived in Ref. [54] polar molecules in

the electronic and vibrational ground state with isolated
rotational modes are captured by the following
Hamiltonian

H ¼ −t
X
i;σ

ðc†i;σciþ1;σ þ H:c:Þ

þ
X
i<j

1

ji − jj3
�
J⊥
2
ðSþi S−j þ S−i S

þ
j Þ þ JzS

z
iS

z
j

þ Vninj þWniS
z
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�
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describing a system of N ¼ N↑ þ N↓ (with N↑ ¼ N↓)
fermionic particles loaded in L sites, with total density
n ¼ N=L. In particular, c†i;σ creates a fermion with a
dressed rotor state or, analogously, with spin state σ in the
i site and Sþi ¼ c†i;↑ci;↓, S

z
i ¼ ðni;↑ − ni;↓Þ=2 are custom-

arily defined as spin 1=2 operators in a fermionic
representation. Besides t ¼ 1 which fixes our energy
scale and characterizes the hopping processes of a
fermion tunneling in a nearest neighbor (NN) site, the
other coupling constants J⊥, Jz, V and W describe
antiferromagnetic exchange in the x − y plane and in
the z plane, density-density, and a density-spin interac-
tion, respectively. Furthermore, due to fact that Eq. (1)
can be realized with highly reactive molecules, double
occupancies ð↑↓Þ, are strictly forbidden. This aspect is
taken into account by projecting the model Eq. (1) onto
the subspace with a vanishing number of doubly occupied
sites, H → PHP, with P ≐

Q
ið1 − ni↑ni↓Þ, thus giving

rise to a truncated local Hilbert space ð0;↑;↓Þ.
For NN couplings Eq. (1) has been intensively studied in

different regimes. In particular for J⊥ ¼ Jz, V ¼ −1=4, and
W ¼ 0 one recovers the well-known t − J model [42–44].
Relevantly, the possibility to tune all the parameters has
made reliable also the study of other cases. In particular,
for Jz ¼ V ¼ W ¼ 0 enhanced superconductivity [58] and
d-wave superfluidity [59] have been found, whereas for
J⊥ ¼ V ¼ W ¼ 0 superconducting behaviors [60,61] and
mesonic resonances [62] are expected. Nevertheless in the
aforementioned regimes topological phases have not been
predicted.
Here we study the more general situation where V ¼

W ¼ 0 and both J⊥ and Jz are finite and can take different
values, thus describing an anisotropic t − J model. Since
in 1D couplings decaying like ji − jj−α with α > 1 are not
expected to generate new phases [55] we consider the
interactions limited to NN sites. In fact the inclusion of
longer range couplings turns out to just modify the shape of
the quantum phases but not their nature (see Supplemental
Material [63]).
Bosonization.—In the above hypothesis, the model

Eq. (1) can be regarded as a Hubbard Hamiltonian with
anisotropic Heisenberg interaction in the limit of infinite
on-site repulsion U. This model has been studied within
bosonization at finite U both at [64] and away [65] from
half-filling. In the second case the fundamental ground state
features may be extracted by taking the limit U → ∞ of the

FIG. 1. DMRG phase diagram. Upper panel: Phase diagram at
fixed density n ¼ 2=3 and t ¼ 1 as a function of Jz and J⊥. It
consists of four phases: Luttinger liquid (white area), Luther
Emery liquid (cyan area), Haldane liquid (pink area) and phase
separation (purple area). The solid lines correspond to Δs ∼
2 × 10−3 [57] for the HL-LL and LL-LEL transitions, and
K−1

c → 0 for the transition to PS. In each phase, the thick
dashed line (Kc ¼ 1) identifies the crossover to the super-
conducting regime Kc > 1 (dashed area): Haldane liquid with
dominant triplet superconductivity, Luther-Emery liquid with
dominant singlet superconductivity, and Luttinger liquid
with dominant either triplet or singlet superconductivity. Lower
panel: Phase diagram as a function of the density and Jz, at
fixed J⊥ ¼ 1 and t ¼ 1.
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bosonization analysis in the hypothesis that stronger
interaction is not capable to open further phases. One finds
that depending on the value of the anisotropy δ ≐ Jz=J⊥ the
system can be either in a gapless Luttinger liquid phase
(δ < 1) or in a spin-gapped phase (δ > 1). In the latter case,
the specific value of the bosonic field reveals [28,29,66]
that the opening of the spin gap is associated uniquely with
a nonvanishing string parameter (see also below), thus
displaying the appearance of a Haldane liquid (HL) phase.
At the same time numerical studies [58] have shown that
the δ ¼ 0 case supports the presence of a spin gapped
Luther Emery liquid (LEL) phase not predicted by the
above bosonization analysis. Thus, here we follow also an
alternative route based on treating the kinetic term pro-
jected with P as a correlated hopping processes [63]. In this
way we are able to predict the appearance of both the HL
and the LEL phases for δ ≠ 0.
In each of the above phases, the actual value of the

charge Luttinger parameter Kc, which we will properly
define later, can be used to identify the regime where
superconducting correlations become dominant [55]. In
particular the value Kc ¼ 1 characterizes the crossover to
the superconducting regimes. As shown in Fig. 1 we find
thatKc > 1 can occur in all the possible conducting phases.
More precisely we get that in the gapless LL phase both
triplet (TS) and singlet (SS) superconducting orders can
become dominant, describing a Luttinger superconductor
(LS) regime. On the other hand, the gapped phases support
the presence of only one type of superconductivity: SS in
the LEL phase (LESS regime), and TS in the HL phase,
thus describing an Haldane liquid in which a regime with
dominant triplet superconductivity appears (HTS regime).
Topological features.—A bosonization analysis can

show that the two spin gapped phases are associated to
specific nonlocal order parameters defined as OS=P ¼
limr→∞OS=PðrÞ, with

OSðrÞ ¼ 4

�
Szj

Yjþr−1

l¼j

e{2πS
z
l Szjþr

�
; ð2Þ

OPðrÞ ¼
� Yjþr−1

l¼j

e{2πS
z
l

�
; ð3Þ

and called string and parity, respectively. The string order
parameter OS is nonzero in the whole HL phase, while it
vanishes in the LL and LEL phases; whereas the parity OP
is nonzero in the entire LEL phase and zero in the LL and
HL phases [63], [28]. We point out that, at variance with the
parity order, a hidden string order detected by a non-
vanishing OS [21] is a typical signature of the topological
nature of the corresponding Haldane phase [18–20]. Thus,
we expect that such a phase hosts entangled fractionalized
spins localized at the edges of an open chain, which average
value differs from the bulk one: hSz1i� ¼ −hSzLi� ≠ 0,

�1=2. Here h…i� denotes the expectation value taken
on the two degenerate ground states jψGSi�.
For J⊥ ¼ 0 the above topological features can be

evaluated explicitly [67]. The ground state has been
discussed in Ref. [61], upon recognizing that the particles
must have alternated spins and thus can be replaced by
spinless fermions. For Jz > 8t, phase separation occurs,
where particles and empty sites are immiscible. Whereas
for Jz < 8t the ground state is conducting, and super-
conducting correlations are dominant for Jcz < Jz < 8t
[68,69]. Since the particles have alternated spin orientation,
we observe that the phases must also be spin gapped. This
is consistent with our previous bosonization analysis,
where a spin gapped topological phase was identified for
1=δ < 1. The result is also confirmed by the value of the
string order parameter in such phase: OSðrÞ→r→∞n2 [67].
Similarly, one can calculate the fractional spin located at the
edges, obtaining

hSz1i� ¼ � n
2
¼ −hSzLi�: ð4Þ

The subsequent numerical analysis will show that both
topological properties hold qualitatively also in the non-
integrable case J⊥ ≠ 0, in a large portion of the phase
diagram.
DMRG analysis.—In order to study also the J⊥ ≠ 0

case and to validate the bosonization predictions, a priori
reliable for weak interaction, we provide quasi exact
DMRG results [70]. The numerical phase diagram is shown
in Fig. 1, at fixed filling n ¼ 2=3 (upper panel) and fixed
J⊥ ¼ 1 (lower panel).
The first fundamental quantity to properly capture all the

miscible phases is the spin gap Δs ¼ limL→∞ΔsðLÞ, where
ΔsðLÞ ¼ limL→∞½EðN ¼ L;Sztot ¼ 1Þ−EðN ¼ L;Sztot ¼ 0Þ�
and EðN; SztotÞ is the ground state energy of a system withN
particles and total magnetization Sztot ¼

P
L
i¼1 S

z
i . As shown

in Fig. 2 we find that for small J⊥ a region with open spin
gap is present. Once J⊥ is increased, the competition
between the two antiferromagnetic couplings generates a
fully gapless LL phase. At the same time Fig. 2 also makes
evident that a further increase of J⊥ allows for the
appearance of another phase with Δs ≠ 0. This validates
the bosonization predictions regarding the presence of two
distinct regions with open spin gap. As shown in the central
panel of Fig. 2 the latter are each characterized by the
nonvanishing of one of the two nonlocal order parameters
Eqs. (2) and (3). More precisely we obtain that for small J⊥
hidden z antiferromagnetism is favorable. This gives rise to
a topological HL phase signaled by OS ≠ 0 (pink region in
Fig. 1). On the other hand, for large J⊥ the spin gap turns
out to be associated with OP ≠ 0, thus identifying the
trivial LEL phase (cyan region in Fig. 1). As mentioned,
the appearance of fractional edge modes is captured by the
value of the edge magnetization. In the lower panel of
Fig. 2 we show that, even for J⊥ ≠ 0, hSzLi ≠ 0 remains
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finite only in the topological phase with non vanishing OS.
It approaches the value n=2 of Eq. (4) in the integrable limit
J⊥ ¼ 0 while reaching the asymptotic value 1=L [71] in all
the other phases.
Moreover, for stronger values of the couplings the system

undergoes a further phase transition entering in a region of
phase separation. This is captured byK−1

c → 0which signals
a diverging value of the compressibility. As customary,
we have extrapolated Kc from the charge structure factor
SðqÞ¼ð1=LÞPi;je

{qði−jÞðhninji−hniihnjiÞ:

Kc ¼ lim
q→0

π

q
SðqÞ; ð5Þ

in order to locate the transition line.
As already discussed, in each phase the value of Kc

identifies also the crossover to the regime in which super-
conducting correlations become dominant (dashed regions
in Fig. 1). By combining the procedure just explained with
a finite size extrapolation (see lower panel of Fig. 3) we
locate the corresponding transition line (Kc ¼ 1) reported
in Fig. 1. Moreover in order to enforce the results, in the
upper panel of Fig. 3 we have checked the power law
decays of the relevant conducting orders in the different
regions of the phase diagram. We evaluated the following
correlation functions:

CSDWðrÞ ¼ 4hSziSziþri;
CCDWðrÞ ¼ hniniþri − hniihniþri;
CTSðrÞ ¼ hO†

TSðiÞOTSðiþ rÞi;
CSSðrÞ ¼ hO†

SSðiÞOSSðiþ rÞi; ð6Þ

withO†
TSðiÞ¼ð1= ffiffiffi

2
p Þðc†i;↑c†iþ1;↓þc†i;↓c

†
iþ1;↑Þ andO†

SSðiÞ¼
ð1= ffiffiffi

2
p Þðc†i;↑c†iþ1;↓−c†i;↓c

†
iþ1;↑Þ. In the upper panel of Fig. 3,

we find that for small Jz > J⊥, nonsuperconducting corre-
lations (CSDW) are the leading order in the topological HL
phase. Whereas for larger Jz values it is clearly seen that
singlet and triplet superconductivity become the dominant
orders in the trivial (LESS regime) and topological (HTS
regime) phases, respectively, in agreement with the behav-
ior expected for Kc > 1. Thus we have unambiguously
demonstrated that in the model Eq. (1) superconductivity
can coexist with topological properties like fractionalized
edge modes.
Conclusions.—We derived the phase diagram of a

generalized t − J model in the presence of spin anisotropy.
Here the competition between hole motion and antiferro-
magnetic coupling gives rise to a rich phase diagram. The

FIG. 2. Upper panel: Spin gap in the TDL at fixed Jz ¼ 5 and
extrapolated by keeping L up to 120. The inset shows examples
of the finite size scaling in LL (white squares), LEL (cyan
triangles), and HL (pink circles). ΔsðLÞ has been obtained by
using open boundary conditions, keeping up to 500 states and 5
finite size sweeps. Central panel: Nonlocal string and parity order
parameters obtained from finite-size scaling of OSðL=2Þ and
½OPðL=2 − 1Þ þOPðL=2Þ þOPðL=2þ 1Þ�=3 computed for sys-
tems up to L ¼ 48. We used periodic boundary conditions and
keep up to 1200 states and 6 finite size sweeps. Lower panel:
Edge magnetization hSzLi on the last site for an unbalanced
system with N↑ ¼ N↓ þ 1. All the results are obtained by fixing
t ¼ 1 and n ¼ 2=3.

FIG. 3. Upper panel: Decay of the correlation functions in HL
withKc < 1, HTS and LESS regimes. The correlations have been
computed with OBC for a chain of length L ¼ 120, between the
site L=4 and the site at distance r. Lower panel: Charge Luttinger
parameter in the TDL at fixed J⊥ ¼ 1. The inset shows the finite
size scaling in the two regions with Kc < 1 and Kc > 1. All the
results are obtained by fixing t ¼ 1 and n ¼ 2=3.
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latter reveals the presence of a gapless Luttinger liquid phase
surrounded by large regions where the spin gap becomes
finite. Moreover the study of correlation functions allows us
to notice how, among different conducting orders, super-
conductivity can become dominant. By means of nonlocal
order parameters, we found that the spin gap is generated by
two different mechanisms: either by virtual excitations of the
vacuum composed by bounded fermions with antiparallel
spins, thus captured by a parity operator; or by hidden
antiferromagnetic order among particles with antiparallel
spin, thus described by a string correlator. The latter scenario
is associated with the presence of degenerate fractionalized
edge states. Relevantly, such topological order occurs also
where superconducting correlations are dominant. Hence
our results provide a fundamental microscopic description of
topological superconductivity induced by interaction. They
also open the way towards the observation of new properties
of such topological matter, which are expected [34] to
drastically differ from those appearing in noninteracting
systems. In conclusion, it is worth underlying that all our
results can be tested and reproduced by means of the
ongoing experimental techniques involving polar molecules
[39]. Indeed, this platform only requires in situ probes to
measure nonlocal order parameters [35,36], local magneti-
zation [72], and density-density correlation to extrapolate
the Luttinger constant [73].
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