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Amorphous materials have a rich relaxation spectrum, which is usually described in terms of a hierarchy
of relaxation mechanisms. In this work, we investigate the local dynamic modulus spectra in a model glass
just above the glass transition temperature by performing a mechanical spectroscopy analysis with
molecular dynamics simulations. We find that the spectra, at the local as well as on the global scale, can be
well described by the Cole-Davidson formula in the frequency range explored with simulations.
Surprisingly, the Cole-Davidson stretching exponent does not change with the size of the local region
that is probed. The local relaxation time displays a broad distribution, as expected based on dynamic
heterogeneity concepts, but the stretching is obtained independently of this distribution. We find that the
size dependence of the local relaxation time and moduli can be well explained by the elastic shoving model.
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Nonexponential or stretched exponential relaxation is
ubiquitous in amorphous materials and is recognized as one
of the key features in supercooled liquid and glassy states
[1,2]. It appears in many relaxation processes at equilib-
rium or out of equilibrium, such as aging, stress relaxation,
and dielectric or mechanical relaxation spectra [3,4].
However, the origin of the stretching is still controversial
[5]. Two hypotheses are typically put forward to explain the
stretching:One identifies the stretched relaxation as resulting
from dynamic heterogeneity in different regions of space,
and the other assumes that the relaxation in amorphous
material is uniform, with stretched relaxation being a local
feature [6,7].
These different views can to some extent be reconciled

within the now widely accepted concept of dynamical
heterogeneity, which has been confirmed in both experi-
ment and molecular simulation [8]. The supercooled liquid,
for example, can be separated into fast regions of high
mobility and slow regionswith lowermobility, with a “slow”
or “fast” character that persists over times comparable to the
total α relaxation time. Mathematically, stretched exponen-
tial relaxation can be described as a superposition of simple
exponential relaxation processes [9]. It is then a natural
hypothesis to assume that the slow and fast regions asso-
ciated with dynamical heterogeneity each have a simple
exponential relaxation and that the global stretching results
from the different relaxation times associated with different
regions, which may be broadly distributed. In fact, this
natural assumption was recently formalized in a series of
works byMasurel et al. [10–12], who developed amesoscale
model to describe the viscoelastic spectrum in a polymer

model near the glass transition temperature. In their model,
every local region is described as a single Maxwell Voigt
element, with a single relaxation time assigned randomly
from a broad (log normal) distribution. Based on the idea that
dynamic and elastic heterogeneity are related, Schirmacher
[13] also uses a local Maxwell model to describe the
relaxation spectra within a mean field theory.
However, this assumption that the stretched exponential

relaxation arises from simple exponential relaxation in local
regions has not, to our knowledge, been proven in direct
investigations. Only indirect consequences, as in the work of
Masurel et al., have been explored. In this work, we question
directly the validity of this assumption for mechanical
properties, using the flexibility offered bymolecular dynam-
ics simulations. We build on previous explorations of static
properties such as local elastic constants [14] or thermome-
chanical [15] properties and develop a methodology that
allows us to obtain the dynamic modulus spectrum in a
supercooled liquid near the glass transition at different length
scales. We find that different dynamical spectra can be well
fitted by a Cole-Davidson expression, with a distribution of
relaxation times that evolves with the measurement scale.
However, surprisingly, the stretching exponent does not
change with increasing the spatial scale and is nontrivial
at the smallest scale investigated. Furthermore, we find a
strong correlation between the local modulus and relaxation
time, which can be rationalized within an elastic shoving
model [2] at the local scale, and the size dependence of the
average relaxation time and shear modulus can be well
explained by confinement effects, which reflect the nature of
elastic interactions in supercooled liquids.
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Our study of local viscoelastic properties is based on
molecular dynamics (MD) simulations of a classical 80∶20
binary Lennard-Jones (LJ) glass model [16] using the
LAMMPS package [17]. The interaction potential was trun-
cated and force shifted [18]. LJ units based on themassm, the
interaction diameter σ, and energy ϵ of the large particles are
used throughout, with a time unit

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
. Ten independent

simulation samples containing 80 000 atoms each were
generated to improve statistics. Figure 1(a) illustrates the
potential energy per particle during quenching of the sample
at various rates and constant volume in periodic boundary
conditions. The quench rate used in our study is 1.67 × 10−6.
The temperaturewas controlled with a Berendsen thermostat
[19], the time step was set to 0.001, and the number density ρ
was fixed at 1.2.
To obtain the dynamic shear modulus of thewhole sample

(bulk) and of local regions for different frequencies, we
performed a numerical analog of a mechanical spectroscopy
experiment [21] at fixed temperature T ¼ 0.435. To deter-
mine the local properties, we used a modified version of the
frozenmatrixmethod,whichwas previously used tomeasure
local moduli [14] or local yield stress [22] at zero temper-
ature. As shown in Fig. 1(b), we first choose a spherical
region of radius rc, then shear the whole sample with
sinusoidal strain γ ¼ γA sinðωtÞ, and let only the selected

region relax underNVT conditions, while the outside region
was affinely deformed according to the imposed sinusoidal
shear strain.As a result, the local shear stressΣðtÞ acquires an
oscillatory component at the same frequency, which is
extracted from the noise using the numerical analog of a
lock-in amplification. As shown in Fig. 1(c), the storage
shear modulus G0ðωÞ and loss shear modulus G00ðωÞ were
derived from the local stress signal ΣðtÞ using

I ¼
Z

Nð2π=ωÞ

0

sinðωtÞΣðtÞ
γA

dt; ð1Þ

J ¼
Z

Nð2π=ωÞ

0

cosðωtÞΣðtÞ
γA

dt; ð2Þ

G0ðωÞ ¼ Iω
Nπ

; G00ðωÞ ¼ Jω
Nπ

; ð3Þ

G�ðωÞ≡G0ðωÞ þ iG00ðωÞ; ð4Þ

whereN is the number of strain cycles and γA is the amplitude
of strain. Herewe chooseN ¼ 5, γA ¼ 0.02; the influence of
the choice ofN and γA is discussed in SupplementalMaterial
[23]. In order to sample the space, the center points of the
free regions were selected from a regular grid. For rc ¼ 5,
the sample was meshed as 8 × 8 × 8; for rc ¼ 6, 7, 10, the
grid was 6 × 6 × 6; and for rc ¼ 15, the grid was 4 × 4 × 4.
The bulk dynamic modulus was obtained by applying an
oscillatory strain to the whole simulation box.
For a series of different frequencies, a probability

distribution of the storage and loss moduli can be obtained
from the statistics over different zones. As shown in
Figs. 2(a) and 2(b), this probability distribution of the local
moduli shows a distinct frequency dependence. As the
frequency of the loading increases, the most probable value
of the local storage modulus shifts to higher values, and
the one of the local loss modulus shifts to lower values. This
trend is general, independent of the size of the local region
(for different sizes, see Fig. S2 for rc ¼ 5, Fig. S3 for rc ¼ 6,
and Fig. S4 for rc ¼ 10 in Supplemental Material [23]).
In Fig. 3, the average values of the local storage and loss

modulus (obtained from the probability distribution func-
tion) are now plotted as a function of the frequency and
compared with the bulk values obtained from a dynamical
mechanical analysis on the whole sample. Both storage and
loss moduli are notably influenced by the size. However, all
dynamic moduli frequency spectra, regardless of the size,
can be well fitted by a Cole-Davidson form [25]:

G�ðωÞ ¼ G∞ −G∞ð1þ iωτÞ−β; ð5Þ

where i ¼ ffiffiffiffiffiffi
−1

p
,G∞ is the high-frequency shear modulus, τ

is the relaxation time, and β is the Cole-Davidson stretching
exponent. Since our simulations are performed in the super-
cooled liquid state, where we expect G0ðωÞjω→0 ¼ 0, the

FIG. 1. Local mechanical spectroscopy analysis. (a) Inherent
structure energy vs temperature during the quench process. The
solid lines from top to bottom represent three different quenching
rates: 4.35 × 10−3, 4.35 × 10−4, and 4.35 × 10−5. Solid points
represent the quenching rate 1.67 × 10−6. The state used for the
mechanical spectroscopy analysis in this work is shown by the
box, at temperature T ¼ 0.435, close to the mode coupling
temperature of the model [20]. (b) Schematic representation of
the local mechanical spectroscopy analysis for a selected region
(rc) with sinusoidal strain loading. (c) Local stress response of a
region of size rc ¼ 7 for two different frequencies shifted by one
for clarity (upper, ω ¼ 2π=8000; lower, ω ¼ 2π=2000) in the first
five cycles.
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Cole-Davidson formula contains only three independent
parameters. The formula reduces to the usual Debye model
with a single relaxation time for β ¼ 1.Wewill see below that
this value of β is clearly outside the uncertainty range on the
fit parameters.
Figure 4 reports the parameters obtained from fitting the

frequency-dependent mechanical response, averaged over
all sampled regions as shown in Fig. 3, as a function of the
size of the region. Surprisingly, the stretching exponent β
does not change with the size [see Fig. 4(a)]. However,
since the response shown in Fig. 3 is averaged over many
different regions, this feature can still be explained by two
different hypotheses: Either the average value is the super-
position of individual relaxations, and each individual
region still follows a Debye relaxation with β ¼ 1 in the
Cole-Davidson formula, or the stretching is a feature of
every individual region.
In order to distinguish between these two possibilities, it

would, in principle, be adequate to perform an individual fit
of Eq. (5) to the frequency dependence of the mechanical
response for each region. Unfortunately, such a procedure
turns out to be difficult in view of the relatively large
statistical uncertainty of the individual spectra. Instead, we
choose to investigate the consistency of the above hypoth-
eses with the observed statistical properties of the locally
measured G0ðωÞ and G00ðωÞ, as characterized by the
probability distribution functions shown in Fig. 2.

To this end, we calculate for every zone and loading
frequency the ratio of loss and storage modulus G00ðωÞ=
G0ðωÞ. Within a Cole-Davidson model, this ratio reads

G00ðωÞ
G0ðωÞ ¼ sinðβθÞ

½1þ ω2τ2�β=2 − cosðβθÞ ; ð6Þ

where θ≡ arctanðωτÞ. Considering that the loading fre-
quency is generally such that ωτ ≫ 1, this formula can be
simplified as

G00ðωÞ
G0ðωÞ ≈ sin

�
π

2
β

�
ω−βτ−β: ð7Þ

Figure 2(c) shows the probability distribution of this
ratio for different loading frequencies. As expected from
Eq. (7), the probability distribution function is sensitive to
the loading frequency, with a most probable value that
decreases with an increasing frequency. The width of the
distribution also decreases with an increasing ω. However,
if one now rescales the data to obtain the probability
distribution of G00ðωÞ=G0ðωÞωβ, which according to the
Cole-Davidson model is τ−β, a very good collapse of the
different distributions, independent of the frequency, is
obtained, as shown in Fig. 2(d). Here the value of β ¼ 0.30
was set to the one obtained from fitting the average
response [see Fig. 4(a)], which shows that the average
response is relevant to describe the statistical properties of
individual zones. This proves that every individual region
actually follows the same stretched relaxation process as

FIG. 2. Probability distribution of local dynamic moduli for
rc ¼ 7. (a),(b) Probability distribution of local storage modulus
G0ðωÞ and local loss modulus G00ðωÞ for different frequencies.
(c) Probability distribution of loss and storage modulus ratio
½G00ðωÞ=G0ðωÞ�; (d) collapse of the probability distribution in
(c) by rescaling the data with ωβ for different loading frequencies
(see the text and Fig. 4 for values of β). The solid line in (a) is a
Gaussian distribution; the solid line in (b),(c) and the dashed line
in (d) are Gumbel distributions [24]. Note that there is no
particular physical reason to choose those distributions except
to capture the trend of the data with the loading frequency.

FIG. 3. Dynamic moduli spectra for different sizes. The upper
panel shows the storage moduli and the lower panel the loss
moduli, and the solid lines are a fit to the modified Cole-Davidson
formula. Error bars are of the order of the symbol size and are
obtained by averaging over different numbers of local regions, for
rc ¼ 5, 512 regions; rc ¼ 6, 7, 10, 216 regions; and rc ¼ 15, 64
regions, and for the bulk sample, ten independent samples.

PHYSICAL REVIEW LETTERS 122, 105501 (2019)

105501-3



the bulk sample. Note that the data in Fig. 2 correspond to a
particular size of the local region, namely, rc ¼ 7. However,
different sizes lead to similar conclusions [23].
Following this analysis, one must conclude that the

collapsed distributions shown in Fig. 2(d) represent the
probability distribution of τ−β [up to a factor sin½ðπ=2Þβ�].
From the present data, it follows that the distribution of τ−β

is relatively narrow and it would slightly increase with rc
within our investigation regime (shown in Fig. S5 in
Supplemental Material [23]), in contrast with the common
assumption of a broadly distributed relaxation time, and the
width of the local relaxation time would decrease with rc
[23]. As expected from the dynamic heterogeneity picture,
relaxation is heterogeneous, but the heterogeneity does not
explain the stretching of the relaxation, which is present at
the local scale and rather homogeneous.
Another interesting conclusion from the analysis shown

in Figs. 3 and 4 concerns the size dependence of the
average relaxation times and high-frequency moduli. In
contrast to the result for the stretching exponent, the size
effect is very pronounced for these quantities. We explain
this dependence by assuming that the relaxation time τ
is related to a local free energy barrier ΔF through an
Arrhenius law, τ ∼ eΔF=kbT . Assuming furthermore, follow-
ing the general ideas of elastic “shoving”models [2], that the
free energy barrier is mainly due to elastic energy, then the
high-frequency modulus G∞ is directly correlated with
the free energy barrier, as G∞ ∼ ΔF. The consistency of
these assumptions can be directly checked using a parametric
plot of ln τ vs G∞ with the size of the region as a parameter.

Such a plot is shown in Fig. 4(d) and reveals an excellent
correlation between these quantities.
In order to understand the origin of the size effect on the

energy barrier, we may assume that this energy barrier is
associated with shear transformations taking place within
the zone and compare the situation in which the outside
region is affinely deformed with the one in which this
region is allowed to relax. Two effects will contribute to
increasing the elastic energy in the frozen matrix configu-
ration. First, the local shear modulus in the vicinity of the
frozen boundary will have a smaller nonaffine contribution,
as nonaffine relaxation is partially prevented by the boun-
dary. It is well known that the nonaffine contributions
decrease the shear modulus compared to the purely affine
(Born) value [26], so that a shell in the vicinity of the
boundary will effectively have an increased modulus com-
pared to the bulk. Such a surface contribution is expected to
contribute as 1=rc to the shear modulus of the zone. In
addition, since the shear transformation in a supercooled
liquid shows an Eshelby inclusionlike pattern [27,28], the
energy barrier of shear transformations can be represented
by the Eshelby external field energy [29,30]. For the local
region, the displacement field associated with a shear trans-
formation has to vanish at the boundary rc. This effectively
increases the average shear strain, and an order of magnitude
estimate leads to an increase in the elastic energy scaling as
1=r3c due to this effect [31]. As a result, we propose to fit the
size dependence of the shear modulus (or, equivalently, of
the energy barrier) using the form

G∞ðrcÞ ¼ G∞ðbulkÞ
�
1þ A

rc
þ B
r3c

�
: ð8Þ

The result of this fit yields A ≃ 1.0 and B ≃ 5.4. In the
absence of any other relevant length scale, these values are
consistent with the particle size and volume, respectively.
Togetherwith the correlation between the relaxation time and
shearmodulus shown in Fig. 4(d), these fits provide evidence
for the elastic nature of the local energy barriers.
We have investigated the scale and frequency dependence

of the viscoelastic moduli of a generic glass-forming system
near the glass transition. In the system we investigated, the
stretching of the relaxation cannot be simply assigned to the
superposition of dynamic heterogeneities but already exists
at a very local scale. The smallest size we investigated,
rc ¼ 5, contains a few hundred atoms. It corresponds to the
typical size below which the mechanical response of a local
region no longer follows Hooke’s law [32] and can be
considered as the possible starting point of a coarse-graining
approach. However, the complexity of this “elementary
volume” is already such that a naive coarse graining starting
from a simple Maxwell description at the local scale is not
possible. In fact, this result is consistent with established
results concerning the potential energy landscape of systems
with a small number of particles [33,34], which already for
a few-tenths of particles has a complexity comparable to that
of larger systems. It can also be understood by considering

FIG. 4. Scale dependence of the heterogeneous relaxation
parameters. (a) Cole-Davidson stretch exponent β for different
local radii (the dashed line represents the bulk value). (b),(c)
Local G∞ and local relaxation time τðrcÞ vs inverse confinement
radius 1=rc. The solid curve is a best fit of the data with the
formula ðA=rcÞ þ ðB=r3cÞ (see the text). (d) Correlation between
local relaxation time τ and local G∞. Error bars are obtained from
fitting the data in Fig. 3 within a 95% confidence interval.
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the actual length scales involved in the problem. Recent
theories of glasses introduce the dynamical length ξd and the
static length ξs. ξd quantifies the fact that, in a bulk system,
two regions at points r and r0 have different mobilities at
times t and t0. This length grows rather rapidly near the glass
transition and is comparable to rc ¼ 5 for our system,
according to earlier work [35]. In contrast, ξs characterizes
the amorphous order, grows much more modestly in the
temperature rangewe are studying [35], and is less than three
particle diameters. As a result, the smallest value of rc ≈ 5 at
which we can define a shear modulus already contains
several amorphous regions in the spirit of the random
first-order theory [36]. In view of this ordering of the relevant
length scales, the elastic barrier defined on the scale rc is not
able to probe directly the expected growth of ξd. One may,
however, speculate, as pointed out by Biroli and Bouchaud
in Ref. [36], that the relevant volume in the elastic barrier
involves ξ3d rather than the atomic volume.
While the complexity that determines the stretching

exponent is essentially insensitive to the scale, a nontrivial
scale dependence emerges due to the elastic nature of energy
barriers that govern relaxation in supercooled liquids [28,37].
As discussed above, this dominance of the elastic aspect
appears as we are operating on a scale larger than the static
correlation length [38]. A different regime may be observed
for rc=ξs < 1, a regime that we are not able to probe.
Understanding the global relaxation on the basis of a

coarse-graining approach between elastically interacting
elements seems therefore a promising approach. It would,
however, require one to model each element by a complex
behavior, an approach which, to our knowledge, has not
been attempted until now, and may be challenging within
the framework of classical finite element codes.

This work is supported by (B. S. and P. G.) the NSF of
China (Grants No. 51601009 and No. 51571011), the
MOST 973 Program (No. 2015CB856800), and the
NSAF joint program (No. U1530401). B. S. and P. G.
acknowledge the computational support from the Beijing
Computational Science Research Center (CSRC). J.-L. B.
is supported by Institut Universitaire de France.

*pguan@csrc.ac.cn
†jean-louis.barrat@univ-grenoble-alpes.fr

[1] J. Phillips, Rep. Prog. Phys. 59, 1133 (1996).
[2] J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
[3] W. Gotze and L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).
[4] W. H. Wang, Prog. Mater. Sci. 57, 487 (2012).
[5] A. Cavagna, Phys. Rep. 476, 51 (2009).
[6] M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Chem. Phys.

100, 13200 (1996).
[7] R. Richert, J. Phys. Condens. Matter 14, R703 (2002).
[8] L. Berthier, G. Biroli, J.-P. Bouchaud, and R. L. Jack,

Dynamical Heterogeneities in Glasses, Colloids, and
Granular Media (Oxford University Press, Oxford,
2011), Vol. 150, p. 68.

[9] O. Edholm and C. Blomberg, Chem. Phys. 252, 221 (2000).
[10] R. J. Masurel, S. Cantournet, A. Dequidt, D. R. Long, H.

Montes, and F. Lequeux, Macromolecules 48, 6690 (2015).
[11] R. J. Masurel, P. Gelineau, S. Cantournet, A. Dequidt, D. R.

Long, F. Lequeux, and H. Montes, Phys. Rev. Lett. 118,
047801 (2017).

[12] R. Masurel, P. Gelineau, F. Lequeux, S. Cantournet, and H.
Montes, Eur. Phys. J. E 40, 116 (2017).

[13] W. Schirmacher, G. Ruocco, and V. Mazzone, Phys. Rev.
Lett. 115, 015901 (2015).

[14] H. Mizuno, S. Mossa, and J.-L. Barrat, Phys. Rev. E 87,
042306 (2013).

[15] B. Shang, P. Guan, and J.-L. Barrat, J. Phys. 1, 015001
(2018).

[16] W. Kob and H. C. Andersen, Phys. Rev. E 52, 4134 (1995).
[17] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[18] S. Toxvaerd and J. C. Dyre, J. Chem. Phys. 134, 081102

(2011).
[19] H. J. Berendsen, J. v. Postma, W. F. van Gunsteren, A.

DiNola, and J. Haak, J. Chem. Phys. 81, 3684 (1984).
[20] W.Kob andH. C.Andersen, Phys. Rev. Lett. 73, 1376 (1994).
[21] H.-B. Yu and K. Samwer, Phys. Rev. B 90, 144201 (2014).
[22] S. Patinet, D. Vandembroucq, and M. L. Falk, Phys. Rev.

Lett. 117, 045501 (2016).
[23] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.122.105501 for the ro-
bustness of the simulation, dynamical spectra of other rc,
and width of the local relaxation time.

[24] E. J. Gumbel, Statistical Theory of Extreme Values and
Some Practical Applications: A Series of Lectures (U.S.
Government Printing Office, Washington, DC, 1954),
Vol. 33.

[25] D.W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484
(1951).

[26] K. Yoshimoto, T. S. Jain, K. Van Workum, P. F. Nealey, and
J. J. de Pablo, Phys. Rev. Lett. 93, 175501 (2004).

[27] B. Illing, S. Fritschi, D. Hajnal, C. Klix, P. Keim, and M.
Fuchs, Phys. Rev. Lett. 117, 208002 (2016).

[28] A. Lemaître, Phys. Rev. Lett. 113, 245702 (2014).
[29] J. Eshelby, Proc. R. Soc. A 241, 376 (1957).
[30] G. Picard, A. Ajdari, F. Lequeux, and L. Bocquet, Eur. Phys.

J. E 15, 371 (2004).
[31] S. Li, R. A. Sauer, and G. Wang, J. Appl. Mech. 74, 770

(2007).
[32] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat,

Phys. Rev. E 80, 026112 (2009).
[33] B. Doliwa and A. Heuer, J. Phys. Condens. Matter 15, S849

(2003).
[34] C. Rehwald and A. Heuer, Phys. Rev. E 86, 051504 (2012).
[35] S. Karmakar, C. Dasgupta, and S. Sastry, Annu. Rev.

Condens. Matter Phys. 5, 255 (2014).
[36] G. Biroli and J.-P. Bouchaud, The random first-order

transition theory of glasses: A critical assessment, in
Structural Glasses and Supercooled Liquids (Wiley, New
York, 2012), Chap. 2, pp. 31–113.

[37] P. Sollich, F. Lequeux, P. Hébraud, and M. E. Cates, Phys.
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