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We investigate the dynamics of a deterministic self-propelled particle endowed with coherent memory.
We evidence experimentally and numerically that it exhibits several stable free states. The system is
composed of a self-propelled drop bouncing on a vibrated liquid driven by the waves it emits at each
bounce. This object possesses a propulsion memory resulting from the coherent interference of the waves
accumulated along its path. We investigate here the transitory regime of the buildup of the dynamics which
leads to velocity modulations. Experiments and numerical simulations enable us to explore unchartered
areas of the phase space and reveal the existence of a self-sustained oscillatory regime. Finally, we show the
coexistence of several free states. This feature emerges both from the spatiotemporal nonlocality of this
path memory dynamics as well as the wave nature of the driving mechanism.
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The dynamics of a self-propelled particle usually results
from the balance between an external friction and a self-
propulsive mechanism and leads to a unique ballistic free
solution. If the particle interacts with a memoryless thermal
bath, a large variety of stochastic paths may be observed
[1–3]. However, their dynamics shares common statistical
properties. More complex behaviors with several distinct
free states are observed in the presence of external sensing,
interactions with other particles [4–8], or a minimal form
of intelligence [9–10]. In this Letter, we show how such
complex behaviors emerge even in the absence of any of
these mechanisms, from a coherent memory.
We leverage the properties of self-propelled bouncing

drops, called walkers. Such a system in which the informa-
tion is stored in waves, was introduced a decade ago [11,12].
This entity is composed of a droplet driven by the surface
standing waves it emits when bouncing on the surface of a
vertically oscillating bath [13]. The dynamics of this self-
propelled object is designated as a path-memorywave-driven
dynamics. The information about the droplet past trajectory
is stored iteratively in itswave field composed of the coherent
addition of all elementary standing circular wave fields
centered at the successive droplet bounces. In return, this
information encoded in thewave drives the droplet dynamics
by changing the local slope at each of the impact points.
Walkers are endowed with a nonquantum wave-particle
duality based on a time nonlocality. Several dynamical
solutions emerge from the balance between the surface
shearing and the propulsive forcedependingon the excitation
parameterswhich control thememory time. Themost natural
solution inwhich the dropmoves at a constant speed has been

thoroughly investigated [14–18]. Self-trapped spinning
states have also been studied [19–22]. Wind-Willassen et al.
[23] found nonstationary walking states and ascribed these
dynamical modes to an alternation between different bounc-
ing modes. Finally, Sampara and Gilet [24] have evidenced
that exciting the bath with two frequencies permits nonsta-
tionary walking speed. In these two cases, the nontrivial
solution arises from the complex bouncing and not from a
dynamical feature of the horizontal motion itself.
In this Letter, we report the coexistence of free states based

on wave interference where the drop vertical motion is
synchronized with the bath. We evidence the pivotal role of
the memory depth to drive the system into oscillatory or
chaotic regimes. We study experimentally and numerically
the transient regime of the walk to reveal the process of the
memory buildup. We leverage this exploration of the phase
space to investigate numerically and experimentally the
coexistence of stable nonstationary walking states.
The dynamics of the walkers is successfully described by

the path-memory model as soon as the vertical and
horizontal motions of the droplet are decoupled [25].
The droplet dynamics is driven by successive kicks that
are proportional to the local slope of the global wave field.
This wave field is a coherent superposition of standing
waves centered along the droplet trajectory and sustained
for a time τ owing to a critical slowdown at the vicinity of
the Faraday instability. This parametric instability origi-
nates from the modulation of the apparent gravity at the
fluid interface. The decay time of the stationary waves
is given by τ ∝ TFarð1 − γm=γFÞ−1 [12,15,16] with γm the
vertical acceleration amplitude of the bath and γF the
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Faraday acceleration threshold (γF ≈ 5g in our experi-
ments). The drop hits the bath every Faraday period
TFar ¼ 40 ms. The total guiding wave field hðr; tnÞ at
position r and time tN resulting from successive impacts
at time tk and position rk is

hðr; tNÞ ¼ h0
XN

k¼1

e−½ðtN−tkÞ=τ�J0ðkFjr − rkjÞ; ð1Þ

where Jn denotes the nth Bessel function of first kind and
h0 is the field amplitude. Each of the previous positions of
the drop leaves a wave footprint on the liquid surface and
acts as secondary sources. The system possesses a quanti-
fiable amount of “memory” about its past trajectory, to
which it is sensitive at all times. The memory parameter
Me ¼ τ=TFar measures the mean number of previous
bounces contributing to the dynamics of the walker. The
walker dynamics is modeled by an iterative numerical
scheme that includes a damping force and propelling force
proportional to the local slope of the surface field. The
algorithm has already been described and benchmarked in
Refs. [25–28]. If we denote by vðtNÞ the 1D horizontal
speed of the drop and xðtNÞ its position at time tN ¼ NΔt,
with Δt ¼ TFar then the speed at the next bounce tNþ1 ¼
tN þ Δt is given by

vðtNþ1Þ ¼ vðtNÞ þ Δt½−ηvðtNÞ þ Fwave�; ð2Þ
where the wave force per unit mass is

Fwave ¼ C
XN

k¼1

Δte−½ðtN−tkÞ=τ�J1ðkFðxNþ1 − xkÞ) ð3Þ

and η is an effective friction coefficient. We choose the
range of parameters C ¼ 0.2–1.5 m=s3 and η ¼ 2–5 s−1
consistently with the hydrodynamic description [15,17].
Note that the exact value crucially depends on the fluid
viscosity and drop size [15,17]. Equations (2) and (3) are
reminiscent of the integrodifferential equation proposed in
Refs. [16,19] obtained by taking the continuous time limit
Δt → 0. Oza et al. [16] demonstrated with this continuous
time model that the straight line with constant speed is
linearly stable to tangential perturbations. Note that this
continuous model does not exclude the possibility of other
regimes but we find that keeping a finite size step Δt is
important for the validity of the result presented hereafter
(see Supplemental Material [29], Fig. S1).
To explore the influence of the dynamical exchange

between the wave field and the drop in regimes far from
constant velocity steady states, we first focus on the
transient regime starting from an immobile drop and
increase sharply the bath acceleration. As a result, the
memory time increases drastically and the bath starts
storing positional information of the drop impacts. Both
experiments and numerical simulations have been per-
formed. The experimental set up is sketched in Fig. 1(a).
We consider a drop of silicone oil of kinematic viscosity

50 cSt bouncing on a 7 mm deep bath of the same liquid in
a square tank of 14 cm long and free of inner obstacles. The
tank is vertically vibrated at 50 Hz with an acceleration
amplitude gamma γm ≈ 4.5 g. As shown in Fig. 1(b), we
suddenly increase the acceleration amplitude to a value
above the walking threshold γW for which the horizontal
motion is observed. Two cameras filming from above and
from the side record, respectively, the horizontal and the
vertical motions of the drop.
A snapshot of the experimental transient is shown in

Fig. 1(c). The high-speed film reveals how the horizontal
motion starts. Immediately after the acceleration increase,
the drop bounces a few times on the spot before it starts
moving in the horizontal plane. Simultaneously the ampli-
tude of the wave-field increases without changing its form:
during the following first bounces, the wave field remains
mostly circular, while the drop goes away from the center.
As the drop moves forward, the wave field is deformed and
the original bump fully vanishes after the drop has traveled
a distance of the order of the wavelength.

FIG. 1. Experimental setup and walker’s starting up. (a) Sche-
matics of the experimental setup. A bath of silicon oil is vertically
vibrated at 50 Hzwith a tunable acceleration amplitude γm. It is set
to γm ¼ 4.5 g to allow a submillimetric drop of the same liquid to
bounce in a period doubling regime. (b) Time evolution of the bath
acceleration. For t < 0, γm ¼ 4.5 g the bouncing drop has no
horizontal motion. At time t ¼ 0, γm is suddenly increased above
the walking threshold γW ≈ 4.8 g for which the drop self-propels
on the bath surface, typically γW < γm < γF ≈ 5 g. (c) Snapshots
of the starting up of the walker taken with a high-speed camera
(here time step is Δt ¼ 320 ms with an image width ≈45 mm).
The wave profile is initially circular. The motion breaks this
symmetry and accumulating secondary sources changes the form
of the wave profile.
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The drop positions and speeds are measured and com-
pared with the model [Eq. (2)]. Figure 2(a) shows the time
evolution of the horizontal speed for increasing memory
parameter Me ¼ 7, 36, and for different drops. At short
memory, Me ¼ 7, the drop moves shortly after the accel-
eration amplitude of the bath γm is set above the walking
acceleration threshold γW ≃ 4.8 g. The time t0 needed to
start moving is randomly distributed and depends on the
details of the initial conditions. It remained in the range
0.1–0.7 s (i.e., 3 to 17 drop bounces) and neither depend-
ence on memory nor on drop size of the average delay have
been established from our experiments. For t0 ≤ t≲ 1 s the
drop accelerates sharply and steadily until it reaches a
constant velocity vf ¼ 6.5� 0.2 mm=s for t≳ 1 s. At a

larger memory, Me ¼ 36, the situation changes qualita-
tively and quantitatively. The drop accelerates more vig-
orously than for Me ¼ 7 and the speed exhibits oscillations
that last for typically few seconds. The speed oscillations
are damped in time and the drop speed finally converges to
a constant value vf ¼ 14.6� 0.1 mm=s. For large enough
memory, typically Me≳ 20, the final speed in simulations
depends very little on the memory parameter, and mainly
on the ratio C=η as expected from previous investigations
[11,15,16,19].
The temporal variation of drop speed is a consequence of

the propelling force modulations which results from the
variations of density of secondary sources. To evidence the
origin of this dynamical interplay we investigate exper-
imentally the evolution of the frequency of oscillations ν
with Me and with the final drop speed vf. Varying the drop
size essentially changes the final drop speed that is an easily
measurable quantity. Figure 2(b) shows the experimental
evolution of ν with the final speed of the drop. It reveals that
vf=ν is constant. The memory parameter does not influence
significantly the period of oscillations, so that the character-
istic length does not depend onmemory. The system presents
one single intrinsic relevant length that is the Faraday
wavelength of the propelling wave λF¼2π=kF¼6.1mm.
We find vf=ν ≈ λF within an uncertainty of�3 × 10−2. We
interpret it as an interplay between the dynamical buildup of
the wave and the drop oscillations leading to a situation
where themotion length scale of the particle vf=ν self-adapts
with the unique wave length scale λF.
This interplay can be analyzed by comparing the

instantaneous wave slope with the density of secondary
sources. The linear density of secondary sources is given by
1=ðvTFarÞ. We define the relative source density as Δρ ¼
1=ðvTFarÞ − 1=ðvfTFarÞ. We compare in Fig. 2(c) the
variation of Δρ with the instantaneous wave force per unit
mass Fwave [see Eq. (3)]. We observe that both quantities
oscillate in opposite phases indicating that the dynamical
interplay between the drop and its waves originates in a
temporal exchange between the horizontal momentum of
the drop and the wave force.
We now leverage the existence of nonuniform distribu-

tion of secondary sources during the transient to explore the
possibility of long-standing nonstationary free walking
states. Indeed, transient motion is a practical way to prepare
the system in a state where the initial distribution of
secondary sources is oscillatory. This situation explores
a different region of the phase space where stable speed
limit cycles may develop and survive. At this stage, we
have only presented situations where the oscillations of the
speed were damped in time. We investigate now the
existence of parameter regimes leading to permanent speed
oscillations. We proceed this systematic exploration with
the numerical model before evidencing experimental coex-
istence of free states. We fix the wave coupling constant
C ¼ 1.1 m=s3, while varying the damping constant η and

FIG. 2. Starting up characterization of the walker. (a) Time
evolution of the drop speed for short [Me ¼ 7 (red)] and long
memory [blue line (Me ¼ 36)]. The two cases correspond
physically to two different drops. Experimental data (dashed
lines) fitted by the model Eq. (2) (solid lines) with fitting
parameters C ¼ 0.25 m=s3, η ¼ 3.12 s−1 and C ¼ 1.1 m=s3,
η ¼ 4.72 s−1, respectively. The walker converges to the final
constant speed vf ¼ 6.5� 0.2 and vf ¼ 14.6� 0.1 mm=s, re-
spectively. (b) Experimental frequency ν of the damped speed
oscillation as a function of the final speed for various drops sizes
and linear fit (slope 0.164. pink area: 95% confidence interval).
(c) Time evolution of the experimental density of secondary
sources Δρ along the trajectory (measured in 0.1 × mm−1, black)
and of the force exerted by the waves on the drop Fwave (per unit
mass, m=s−2, red) deduced from Eq. (3) for Me ¼ 36. The
reference Δρ ¼ 0 is taken in the final constant speed limit.
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the memory parameter Me. We measure in the long
time limit the amplitude of the fluctuations of speed
Δv (peak to peak) and construct an order parameter
χ ¼ minfΔv=vf ; 1g. We show its color map in Fig. 3(a)
in the parameter diagram ðη;MeÞ. To further characterize
these dynamics, Fig. 3(b) shows their two-dimensional
representation in the phase space ðv; _vÞ. The corresponding
speed time series are given in the Supplemental Material
[29], Fig. S2. For low values of η, the drop moves at a stable
constant speed [χ ¼ 0 in Fig. 3(a) corresponding to a fixed
point in Fig. 3(b)]. For larger damping η a finite bandwidth
in which the speed oscillations are stable in time exists
[0 ≤ χ ≤ 1 in Fig. 3(a) corresponding to the stable limit
cycle in Fig. 3(b)]. Depending on the initial conditions,
stable fixed points also survive in this regime. The
transition η�ðMeÞ between the two regimes is characterized
by a strong divergence of the oscillation decay time
suggesting a dynamical phase transition. For even stronger
damping and large memory, the fluctuations of speed can
be of the same order as the final speed. In that critical case
the drop stops and turns back, which triggers a chaotic
regime [χ ¼ 1 in Fig. 3(a) and a strange attractor Fig. 3(b)].
Although, chaotic behaviors for synchronous bouncing
states have been observed in confined situations [30–33]
or in the particular cases mediated by complex bouncing
modes [23,24], it is the first time that we observe
chaotic free regimes of walking droplets which intrinsically
rely on their horizontal dynamics. The boundaries sepa-
rating the three distinct regimes mainly depend on the
damping parameter and very little on the memory para-
meter. A different value of wave coupling, C ¼ 3.8 ms−3
(Supplemental Material [29], Fig. S3), did not qualitatively
alter the phase diagram. We expect that the existence of
chaotic free walking regimes itself does not depend on the
dimension of the motion but that the exact nature of the
chaos does [34]. We also note that the transition to chaos is
here very different from the chaotic paths observed in
confining potentials [30–33]. Figure 3(c) shows the exper-
imental evidence of the two free states: the constant
velocity solution and the oscillating velocity solutions
(see the corresponding wave fields in the Supplemental
Movie [29] SM1). The two free states are attractors and
stable. Experimentally, the switch between the two sol-
utions must be triggered by a sufficient external perturba-
tion. For instance, shifting between the two horizontal
dynamical modes can occur when the walker reaches the
edge of the cell. The initial conditions prescribe which
attractor is selected (see numerical simulations in the
Supplemental Material [29], Fig. S4). It suggests that this
property arises here from a horizontal dynamical interplay
between the kinetics of the drop and the energy stored in the
wave in contrast with a switch of bouncing modes as in
Ref. [23]. Indeed, this oscillating velocity mode was
observed in Ref. [23]. They observe a change of the
bouncing vertical dynamics of the droplet associated with
a change of the walker speed. Our model predicts this

FIG. 3. Existence of multiple free states. (a) Numerical color
map of the order parameter χ ¼ minfΔv=vf ; 1g for C ¼
1.1 m=s3 with Me and of η. Starting from an immobile particle,
three distinct regimes are observed: constant speed (χ ¼ 0),
stable oscillations (0 < χ < 1) and chaotic regime (χ ¼ 1).
Depending on the initial conditions, the region of stable oscil-
lations presents also solutions with a constant speed. The circles
along the dashed line at η ¼ 6.2 s−1 at Me ¼ 10 (black), Me ¼
80 (blue), and Me ¼ 400 (red) correspond to the regimes in
Fig. 3(b). (b) Two-dimensional representation of the numerical
dynamics in the phase space ðv; _vÞ. The dynamics converges
to either fixed point [Me ¼ 10 (black)], speed limit cycle [Me ¼
80 (blue)], or strange attractor [Me ¼ 400 (red)]. (c) Experimental
evidence of coexisting free states at Me ¼ 45. Speed of a
same drop with respect to its relative position: the drop is locked
into a limit cycle (orange diamonds). After perturbations
(not shown) it converges to a solution with constant speed
(blue square). The motion are straight but initial directions are
ill defined.
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oscillating regime even without taking into account the
vertical dynamics. Its role and its contribution to the
velocity modulation is still to be investigated.
In this Letter we investigate the existence of spontaneous

nontrivial free states in a wave memory driven dynamics.
Awalker is a self-propelled particlewhich stores information
in a wave and it rereads it at a later time. This dynamical
exchange of energy between the wave and the particle
encodes a rich dynamics which can lead to stable speed
oscillations. In contrast with the usual stick slip, this motion
is not associated with frictional variations but is rather driven
by oscillations of the propelling force which result from the
variations of the density of secondary sources. The existence
of multiple coexisting free states when the memory strength
is further increased is evidenced, which is a striking feature
for a system lacking any form of intelligence.
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