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The quantum electrodynamic correction to the energy of the hydrogen molecule has been evaluated
without expansion in the electron-proton mass ratio. The obtained results significantly improve the
accuracy of theoretical predictions reaching the level of 1 MHz for the dissociation energy, in very good
agreement with the parallel measurement [Hölsch et al., Phys. Rev. Lett. 122, 103002 (2019)]. Molecular
hydrogen has thus become a cornerstone of ultraprecise quantum chemistry, which opens perspectives for
determination of fundamental physical constants from its spectra.
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Introduction.—The spectra of hydrogenic atoms are
being used for determination of physical constants and
for precision tests of the fundamental interactions theory.
However, the finite lifetime of excited states makes further
progress in accuracy very challenging. It would require,
among others, determination of the resonance frequency to
at least one part in 10 000 of the observed line width [1]. In
contrast, the hydrogen molecule (H2) has many narrow
lines, which in principle can be measured very accurately
[2–7]. In this work, we demonstrate that they can also be
calculated very accurately, namely, with 1 MHz uncertainty
or better.
Although the hydrogen molecule is one of the simplest

molecular systems, the high-precision calculations of its
energy levels have been difficult to perform, even in the
nonrelativistic limit. The standard Born-Oppenheimer (BO)
approximation gives a relative accuracy of the order of
10−3–10−4 only as a consequence of the omission of the
coupling between electrons and nuclei movements. In
principle, the finite nuclear mass corrections to the BO
potential can be included systematically within the non-
adiabatic perturbation theory (NAPT) [8]. However, evalu-
ation of the higher order terms of the NAPT becomes
complicated [9]. For this reason the direct nonadiabatic
methods have recently been developed in which two
electrons and two protons are treated on the same footing.
This allowed the inaccuracy of the nonrelativistic energy
Eð2Þ to be reduced to the limit of 4 × 10−12 resulting from
the uncertainty in the proton mass [10].
Regarding subsequent terms in the expansion of energy

in the fine structure constant α,

EðαÞ ¼ α2Eð2Þ þ α4Eð4Þ þ α5Eð5Þ þ α6Eð6Þ þ α7Eð7Þ þ � � � ;
ð1Þ

the relativistic correction, Eð4Þ, has recently been calculated
to a high numerical precision both with direct nonadiabatic
treatment [11–13] and with the NAPT [14,15]. Moreover,
the quantum electrodynamic (QED) Eð5Þ [16] and the
higher order Eð6Þ [17] corrections had been calculated
within the BO approximation only, while Eð7Þ is known
approximately from the atomic hydrogen theory [18].
Neglected nonadiabatic effects of the order Oðα5Þ had
been the largest source of the uncertainty in theoretical
predictions, which for the ground state dissociation energy
equals to 2 × 10−4 cm−1 (6 MHz) [12].
In this work, we report on calculation of the QED

correction Eð5Þ in the framework of the direct nonadiabatic
approach, improving the accuracy of theoretical prediction
for the dissociation energies by an order of magnitude
down to 2.6 × 10−5 cm−1 (0.78 MHz), the best ever
theoretical prediction for any molecule, which becomes
now sensitive to the nuclear charge radii.
Nonrelativistic wave function.—The basis of the accurate

theoretical predictions is the precise nonrelativistic wave
function. In the nonadiabatic approach all particles are
treated on an equal footing, and the wave function is an
eigenstate of the nonrelativistic H2 Hamiltonian of the form

H ¼ T þ V; ð2Þ
where

T ¼ p⃗2
0

2mp
þ p⃗2

1

2mp
þ p⃗2

2

2m
þ p⃗2

3

2m
; ð3Þ

V ¼ 1

r01
−

1

r02
−

1

r03
−

1

r12
−

1

r13
þ 1

r23
: ð4Þ

The indices 0, 1 denote protons of mass mp and 2, 3—
electrons of mass m. In the center of mass frame the
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nonrelativistic wave function depends only on the inter-
particle distances rij. The most convenient approach [12] to
calculate this function is based on a variational principle
with the nonadiabatic explicitly correlated Gaussian
(NAECG) functions. In this approach, the wave function
is represented as

Ψ ¼
XN

i

ciψ iðr⃗0; r⃗1; r⃗2; r⃗3Þ; ð5Þ

ψ i ¼ð1þ P0↔1Þð1þ P2↔3Þϕiðr⃗0; r⃗1; r⃗2; r⃗3Þ; ð6Þ
where Pi↔j is the particle exchange operator, which
accounts for the fact that the ground state H2 wave function
Ψ is symmetric with respect to the exchange of nuclear and
electronic variables. The spatial functions ϕi in Eq. (6) are
naECG functions of the form

ϕ ¼ rn01e
−a1r201−a2r

2
02
−a3r203−a4r

2
12
−a5r213−a6r

2
23 : ð7Þ

The nonlinear a parameters are optimized variationally and
the internuclear coordinate rn01 prefactor ensures proper
representation of the vibrational part of the wave function.
The powers n of this coordinate are restricted to even
integers within the range 0–80 and are generated following
the log-normal distribution. The nonrelativistic wave func-
tion Ψ has been optimized for several basis sizes to observe
the convergence of the nonrelativistic energy and expect-
ation values.
QED correction.—The formula for the leading quantum

electrodynamic correction Eð5Þ, derived here on the basis of
QED theory in agreement with the known formulas for H
[18] and He [19], is

Eð5Þ ¼ −
2D
3π

ln k0 −
7

6π

�
1

r323
þ m
mp
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a;x

1

r3ax
þ m2

m2
p

1

r301

�

ϵ

þ 4

3

�
19

30
þ lnðα−2Þ þ m

4mp

�
62

3
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�
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p
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�
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�
þ lnðα−2Þ þ 4

�	X
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hδ3ðraxÞi þ
�
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15
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3
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�
hδ3ðr23Þi − 2Eð5Þ

H ð8Þ
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; ð9Þ

where a ¼ 0, 1, x ¼ 2, 3, the Bethe logarithm is [20]

ln k0 ¼
1

D
hJ⃗ðH − EÞ ln½2ðH − EÞ�J⃗i ð10Þ

ln kH0 ¼ 2.984128555765498 ð11Þ
and where

J⃗ ¼ p⃗0

mp
þ p⃗1

mp
−
p⃗2

m
−
p⃗3

m
; ð12Þ

D ¼ hJ⃗ðH − EÞJ⃗i ¼ 2π

μ2
X

a;x

hδ3ðraxÞi; ð13Þ

μ ¼ mpm=ðmp þmÞ: ð14Þ
In all the above formulas the expectation values are taken
with the nonrelativistic wave function Ψ. Moreover, the
expectation values of singular terms h1=r3iϵ are obtained
by integration from ϵ to ∞ and subtraction of ln ϵþ γ,
where the symbol γ indicates the Euler-Mascheroni
constant.
There are certain ambiguities regarding the molecular

QED correction of Eq. (8), which need to be explained. The
first one is due to the lack of the contact term between

protons δ3ðr01Þ. In fact, such a term exists, e.g., from the
strong interaction Vstrong between protons [21]

δEstrong ¼ hδ3ðr01Þi
Z

d3rVstrongðrÞ

¼ hδ3ðr01Þið−2.389Þ fm2: ð15Þ
It is of the same order as the electron vacuum polarization
correction to the Coulomb interaction between protons

δEvp ¼ hδ3ðr01Þi
�
−

4

15

�
α2

m2

¼ hδ3ðr01Þið−2.118Þ fm2: ð16Þ
However, both contributions are totally negligible, because
hδ3ðr01Þi ∼ 10−50ðmαÞ3 for the ground state of H2.
Another subtle point to be clarified is the proton self-

energy correction and the corresponding definition of the
proton charge radius. This correction is insignificant for a
regular hydrogen atom but non-negligible for muonic
hydrogen (μH). So, for consistency with the determination
of the proton charge radius rp in μH [22], we chose to
include this effect into the total energy of H2. Following
[23], we do so in a minimal way, by including only
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logarithmic terms, and the nonlogarithmic terms are
absorbed into the mean square charge radius r2p.
Numerical calculation.—QED corrections involve sev-

eral nontrivial terms: the Bethe logarithm ln k0, the inter-
particle Dirac delta hδðrabÞi, and the Araki-Sucher term
h1=r3abiϵ. Because the naECG basis does not reproduce the
electron-electron and electron-nucleus cusps of the wave
function, the two latter terms exhibit a slow convergence if
calculated directly from their definitions. Therefore, to
increase numerical performance, it is crucial to transform
singular operators to a more regular form, whose behavior
is less sensitive to the local inaccuracies of the wave
function. For this purpose, we generalized known relations
[14,24] and obtained the following expectation value
identities with a, b ¼ 0, 1, 2, 3

h4πδ3ðrabÞi¼
2mamb

maþmb

×

�
2

rab
ðE−VÞ−

X

c

1

mc
p⃗c

1

rab
p⃗c

�
; ð17Þ

�
1

r3ab

�

ϵ

¼ð1þγÞh4πδ3ðrabÞiþ
2mamb

maþmb

×

�
2lnrab
rab

ðE−VÞ−
X

c

1

mc
p⃗c

lnrab
rab

p⃗c

�
; ð18Þ

�
1

r4ab

�

ϵ

¼ mamb

ma þmb

�X

c

1

mc
p⃗c

1

r2ab
p⃗c

− 2ðE − VÞ 1

r2ab
� 12πδ3ðrabÞ

�

ϵ

; ð19Þ

where þ is for particles with the same and − with opposite
charges, respectively. Results for the expectation values
extrapolated to the infinite basis size, along with their
estimated uncertainty, are presented in Table I.
Bethe logarithm.—Among all the terms in Eq. (8), the

calculation of the Bethe logarithm ln k0 is the most

complicated one. We express ln k0 in terms of the one-
dimensional integral

ln k0 ¼
1

D

Z
1

0

dt
fðtÞ − f0 − f2t2

t3
ð20Þ

with the function fðtÞ defined as

fðtÞ ¼
�
J⃗

k
kþH − E

J⃗

�
; t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2k
p ð21Þ

which has the following Taylor expansion:

fðtÞ¼f0þf2t2þf3t3þðf4l lntþf4Þt4þOðt5Þ; ð22Þ

with the first two coefficients

f0 ¼ hJ2i; f2 ¼ −2D: ð23Þ

The integrand in Eq. (20), as a smooth function of t, was
evaluated at 200 equally spaced points in the range
t ∈ ½0; 1�, which enabled relative accuracy higher than
10−7. In the numerical calculation of fðtÞ, the resolvent
in Eq. (21) was represented in terms of pseudostates
of the form ϕΠ ¼ r⃗abϕ for all interparticle coordinates.
The nonlinear parameters of ϕΠ are found by a maxi-
mization of f. In the particular case of t ¼ 1 (k ¼ 0),
f can be evaluated analytically using the generalized
Thomas-Reiche-Kuhn sum rule [25] hJ⃗ðH − EÞ−1J⃗i ¼
3ð1þm=mpÞ. We used this opportunity to assess the
completeness of the pseudostates space and to estimate
uncertainties.
For the given size N of the wave function Ψ expansion,

the size of the pseudostate basis set was chosen as
N0 ¼ 3

2
N, which appeared to be sufficient for most of

the t points. There are also additional factors taken into
account for the accurate representation of the resolvent in
Eq. (21). The powers of internuclear coordinate r01,
analogously to the wave function, are restricted to even
integers and are generated randomly for each basis function
from the log-normal distribution within the 0–80 range.
However, for small values of t (≤ 0.1), due to a cancellation
in the numerator of Eq. (20), an additional tuning of the
distribution was made and N0 ¼ 2N was set to achieve high
accuracy. Moreover, in this critical region of small t, the
function fðtÞ was expanded in a power series with f3, f4,
and f4l coefficients deduced from the known high-k
expansion by Korobov [26] (μ0 ¼ μ=m)

f3 ¼ 8
ffiffiffiffi
μ0

p
D;

f4l ¼ 16μ0D;

f4 ¼
4

μ02
X

ða;xÞ;ðb;yÞ

�
r⃗ax
r3ax

r⃗by
r3by

�

ϵ

− 2D
�
1þ 4μ0 ln

μ0

4
− 4μ0

�
:

ð24Þ

TABLE I. Expectation values of the operators present in
Eq. (8). Atomic units are used throughout the Table.

Operator Expectation value

E −1.164 025 030 86ð3Þ
hJ2i 2.518 270 507 19(12)
4π

P
a;xhδ3ðraxÞi 11.346 476 34(9)

4πhδ3ðr23Þi 0.202 830 306(6)P
a;xhr−3ax iϵ −7.191 104 3ð10Þ

hr−323 iϵ 0.401 943 51(6)
hr−301 iϵ 0.357 215 411 7(3)P

a;xhr−4ax iϵ −5.712 727ð17ÞP
ða;xÞ<ðb;yÞhðr⃗ax=r3axÞ · ðr⃗by=r3byÞi −0.254 515 18ð18Þ
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The higher order expansion terms are obtained from the fit
to numerical values of fðtÞ. As a test, f4 ¼ 72.11486ð7Þ
calculated using the above formula, agrees well with 72.0
(3) obtained from the numerical fit. In order to perform
integration in Eq. (20), we use a polynomial interpolation
of the integrand for t > 0.1, and power expansion for the
critical region t ∈ ½0; 0.1�.
The convergence of the Bethe logarithm with the

increasing size of the naECG basis is shown in Table II.
Six significant figures can be considered stable and the
estimated relative accuracy is a half ppm. Our recom-
mended value ln k0 ¼ 3.0183049ð15Þ is consistent with
3.0188 obtained in the framework of adiabatic approxima-
tion [16], and the difference between them divided by ln k0
is smaller than the electron-proton mass ratio. An analo-
gous difference of 0.0005 between adiabatic and non-
adiabatic ln k0 has been noted for Hþ

2 [16,27].
Higher order QED.—Because of the significant increase

in the accuracy of the QED correction achieved in this
work, the dominating contribution to the uncertainty comes
from the higher order Eð7Þ correction. Currently, an explicit
form of this correction is unknown, which prevents its
accurate evaluation. Its first estimation, madewithin the BO

approximation framework, was reported in Ref. [17]. Here,
we account for several additional terms, namely,

Eð7Þ≈π

�X

a;x

δ3ðraxÞ
��

1

π
½A60þA61 lnα−2

þA62ln2α−2�þ
1

π2
B50þ

1

π3
C40

	
−2Eð7ÞðHÞ; ð25Þ

and assume a conservative 25% uncertainty. All the
coefficients A, B, and C can be found in Ref. [18], and
we use the values for the 1S state of H. The dominating
term is the one containing A62 ¼ −1 and inclusion of all the
other terms decreases Eð7Þ by about 14%.
Summary.—Theoretical predictions for all the known

contributions to D0;0 and D0;1 are assembled in Table III.
By Dv;J we denote there the dissociation energy of the
hydrogen molecule in the state with the vibrational number
v and rotational J. The nonrelativistic contribution was
calculated directly for D0;0 and D0;1. All the corrections
were calculated for D0;0 and separately for the rotational
excitation energy using NAPT. However, the QED correc-
tion for this excitation energy was calculated within the BO
approximation only, but the related uncertainty is small.
Finally, the dissociation energy D0;1 was obtained as the
difference between D0;0 and the rotational excitation.
The improved theoretical result for the ground state

dissociation energy D0;0 of the hydrogen molecule is in
very good agreement with the most recent measurements
[2,7], but their uncertainties are an order of magnitude
larger. The situation is more intriguing for the dissociation
energy D0;1 of the first rotationally excited state. Although,
our theoretical prediction differs by 2σ from the equally
accurate recent measurement [6], it is in very good agree-
ment with the twice as accurate measurement reported in
the preceding Letter [31], see Table III.

TABLE II. Convergence of the nonrelativistic energy E and the
Bethe logarithm ln k0 with the increasing size N of the naECG
basis set. The final uncertainty for ln k0 is due to numerical
inaccuracy of fðtÞ at small t.

N E ln k0

128 −1.164 023 669 155 3.016 586 1
256 −1.164 024 987 878 3.018 137 0
512 −1.164 025 027 334 3.018 258 91
1024 −1.164 025 030 593 3.018 301 73
2048 −1.164 025 030 843 3.018 303 90
∞ −1.164 025 030 86ð3Þ 3.018 304 9(15)

TABLE III. Theoretical predictions for the dissociation energy budget for the ground level of H2. E
ð6Þ
sec is a second

order correction due to relativistic BO potential; EFS is the finite nuclear size correction with rp ¼ 0.84087ð39Þ fm
[28]. All the energy entries are given in cm−1.

Contribution D0;0 D0;1 ð0; 1Þ → ð0; 0Þ Remarks and references

Eð2Þ 36 118.797 746 10(3) 36 000.312 485 66(2) 118.485 260 44(4) naJC; [29]

Eð4Þ −0.531 215 6ð5Þ −0.533 799 2ð5Þ 0.002 583 56(1) naECG; [12], this work

Eð5Þ −0.194 910 43ð15Þ −0.193 887 7ð11Þ −0.001 022 7ð11Þ naECG; [14], this work

Eð6Þ −0.002 067ð6Þ −0.002 058ð6Þ −0.000 008 9 BO; [17]

Eð6Þ
sec

0.000 009 2 0.000 009 1 0.000 000 1 BO; this work

Eð7Þ 0.000 101(25) 0.000 101(25) 0.000 000 5(1) BO; [14,17]

Eð4Þ
FS

−0.000 031 −0.000 031 −0.000 000 2 BO; [14,17]

Total 36 118.069 632(26) 35 999.582 820(26) 118.486 812 7(11)
Exp. 36 118.069 62(37) 35 999.582 894(25) 118.486 8(1) [2], [6], [30]
Diff. −0.000 01ð37Þ 0.000 074(36) 0.000 0(1)
Exp. 36 118.069 45(31) 35 999.582 834(11) [7], [31]
Diff. −0.000 18ð31Þ 0.000 014(28)
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Conclusions.—Thiswork concludes efforts to increase the
accuracy of theoretical predictions for the dissociation
energy of H2, feasible within the framework of the existing
theory. Further progress is likely, provided an explicit
formula for the Eð7Þ term in the expansion [Eq. (1)] is found.
Currently, the main uncertainty of 25 × 10−6 cm−1

(0.75 MHz) comes from this correction, which for the time
being, is estimated using the known atomic hydrogen
formula, see Eq. (25). Despite this approximation, the new
results for dissociation energies of the hydrogen molecule
become the most accurate ever obtained for any molecule.
Regarding the possibility of determination of the

Rydberg constant or the proton charge radius, let us point
out that in the atomic hydrogen, apart from 1S-2S tran-
sition, there is no other narrow transition, and the present
charge radius determination relies on an average of many
transitions with much larger natural linewidth than the
accuracy of individual measurements. The alternative route
suggested by Merkt [32] is to use the ionization energy of
the hydrogen molecule, as a second transition, because its
natural width is exactly zero. The determination of the
dissociation energy in Refs. [2,6,7,31] is in fact the
measurement of the ionization energy EðH2; IPÞ,

EðH2; IPÞ ¼ D0ðH2Þ þ EðH; IPÞ −D0ðHþ
2 Þ ð26Þ

which for ortho-H2 amounts to about 124357 cm−1 [6].
The ratio with the precisely known 2S-1S transition
82259 cm−1 [33] is independent of the Rydberg constant,
but depends on the proton charge radius through

EðH2; IPÞ
EðH; 2S − 1SÞ ¼ 1.512 − 1.4 × 10−10 r2p=fm2: ð27Þ

Consequently, one needs to achieve

δEðH2; IPÞ ¼ EðH; 2S-1SÞ2 × 0.01 × 1.4 × 10−10 r2p=fm2

¼ 1.6 × 10−7 cm−1ð5 kHzÞ ð28Þ

accuracy for the ionization energy of H2 to obtain the
proton radius with 1% precision. Among the contributions
to EðH2; IPÞ in Eq. (26), the last two are known with much
higher precision [34] than required. Therefore, it is only
D0ðH2Þ which needs to be improved. This can be achieved
by the evaluation of the nonadiabatic Eð6Þ, Eð7Þ in the BO
approximation, and the Eð8Þ contribution using the atomic
hydrogen theory. Among them, the calculation of Eð7Þ is the
most demanding task, since it has not yet been accom-
plished for helium or for any other system except the
hydrogen atom and Hþ

2 ion [18,35], but it is feasible using
present-day technologies.
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