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Nonadiabatic QED Correction to the Dissociation Energy of the Hydrogen Molecule
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The quantum electrodynamic correction to the energy of the hydrogen molecule has been evaluated
without expansion in the electron-proton mass ratio. The obtained results significantly improve the
accuracy of theoretical predictions reaching the level of 1 MHz for the dissociation energy, in very good
agreement with the parallel measurement [Holsch et al., Phys. Rev. Lett. 122, 103002 (2019)]. Molecular
hydrogen has thus become a cornerstone of ultraprecise quantum chemistry, which opens perspectives for
determination of fundamental physical constants from its spectra.
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Introduction.—The spectra of hydrogenic atoms are
being used for determination of physical constants and
for precision tests of the fundamental interactions theory.
However, the finite lifetime of excited states makes further
progress in accuracy very challenging. It would require,
among others, determination of the resonance frequency to
at least one part in 10 000 of the observed line width [1]. In
contrast, the hydrogen molecule (H,) has many narrow
lines, which in principle can be measured very accurately
[2-7]. In this work, we demonstrate that they can also be
calculated very accurately, namely, with 1 MHz uncertainty
or better.

Although the hydrogen molecule is one of the simplest
molecular systems, the high-precision calculations of its
energy levels have been difficult to perform, even in the
nonrelativistic limit. The standard Born-Oppenheimer (BO)
approximation gives a relative accuracy of the order of
1073-10=* only as a consequence of the omission of the
coupling between electrons and nuclei movements. In
principle, the finite nuclear mass corrections to the BO
potential can be included systematically within the non-
adiabatic perturbation theory (NAPT) [8]. However, evalu-
ation of the higher order terms of the NAPT becomes
complicated [9]. For this reason the direct nonadiabatic
methods have recently been developed in which two
electrons and two protons are treated on the same footing.
This allowed the inaccuracy of the nonrelativistic energy
E®@ to be reduced to the limit of 4 x 10~'? resulting from
the uncertainty in the proton mass [10].

Regarding subsequent terms in the expansion of energy
in the fine structure constant «,

E(a) = E? + o*E® + &’ E®) + o®E©®) + o' ET) ...,
(1)
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the relativistic correction, E®), has recently been calculated
to a high numerical precision both with direct nonadiabatic
treatment [11-13] and with the NAPT [14,15]. Moreover,
the quantum electrodynamic (QED) E®) [16] and the
higher order E©) [17] corrections had been calculated
within the BO approximation only, while E(7) is known
approximately from the atomic hydrogen theory [18].
Neglected nonadiabatic effects of the order O(a’) had
been the largest source of the uncertainty in theoretical
predictions, which for the ground state dissociation energy
equals to 2 x 107* cm™' (6 MHz) [12].

In this work, we report on calculation of the QED
correction E©) in the framework of the direct nonadiabatic
approach, improving the accuracy of theoretical prediction
for the dissociation energies by an order of magnitude
down to 2.6x 107 cm™' (0.78 MHz), the best ever
theoretical prediction for any molecule, which becomes
now sensitive to the nuclear charge radii.

Nonrelativistic wave function.—The basis of the accurate
theoretical predictions is the precise nonrelativistic wave
function. In the nonadiabatic approach all particles are
treated on an equal footing, and the wave function is an
eigenstate of the nonrelativistic H, Hamiltonian of the form

H=T+YV, (2)
where
2mp m, 2m  2m
1 1 1 1 1 1
V=———— +—. (4)

The indices 0, 1 denote protons of mass m, and 2, 3—
electrons of mass m. In the center of mass frame the
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nonrelativistic wave function depends only on the inter-
particle distances r;;. The most convenient approach [12] to
calculate this function is based on a variational principle
with the nonadiabatic explicitly correlated Gaussian
(NAECG) functions. In this approach, the wave function
is represented as

N
Y= Zcil//i(70171,72,73)v (5)

Wi =(14 Poo) (1 + Pro3)i(To. 71,72, 73).  (6)

where P;; is the particle exchange operator, which
accounts for the fact that the ground state H, wave function
Y is symmetric with respect to the exchange of nuclear and
electronic variables. The spatial functions ¢; in Eq. (6) are
naECG functions of the form

|

2D 7 /1 m 1 m?
EO) = — T Inky ——{( —+ 2N 4
z Ko 6ﬂ<r§3+mp;r3x+m%

a,x

where a =0, 1, x = 2, 3, the Bethe logarithm is [20]

1 - -
Inky = 2—)<J(H —E)In[2(H - E)|J) (10)
In kg’ = 2.984128555765498 (11)
and where

j_Po Pi_P_Ps (12)

m, m, m m

- - 271' 3
D= <J(H_E)J> =5 <5 (rax)>’ (13)
p=m,m/(m, +m). (14)

In all the above formulas the expectation values are taken
with the nonrelativistic wave function ¥. Moreover, the
expectation values of singular terms (1/7°), are obtained
by integration from e to oo and subtraction of Ine + vy,
where the symbol y indicates the Euler-Mascheroni
constant.

There are certain ambiguities regarding the molecular
QED correction of Eq. (8), which need to be explained. The
first one is due to the lack of the contact term between

2 2 2 2 2 2
4) = r(’)’le‘“lr01_a2r02_“3ros_“4r12_“5r13_“6r23 . (7)

The nonlinear a parameters are optimized variationally and
the internuclear coordinate rfj; prefactor ensures proper
representation of the vibrational part of the wave function.
The powers n of this coordinate are restricted to even
integers within the range 0—80 and are generated following
the log-normal distribution. The nonrelativistic wave func-
tion ¥ has been optimized for several basis sizes to observe
the convergence of the nonrelativistic energy and expect-
ation values.

QED correction.—The formula for the leading quantum
electrodynamic correction £ (5) derived here on the basis of
QED theory in agreement with the known formulas for H
[18] and He [19], is

4 (19 2 m [62 -
>€+§{%+ln(a )+M<?—I—ln(a )>

p

+ Z—j [m <%> +1In(a™?) + 4} }2(53(rax)> + (11#‘54 + 13—41n a) (83(ra3)) — 2EL) (8)

protons &°(ry;). In fact, such a term exists, e.g., from the
strong interaction V., between protons [21]

5Estrong = <53(I”01)> / d3rvstrong(r)
= (83(ro1))(~2.389) fm2. (15)

It is of the same order as the electron vacuum polarization
correction to the Coulomb interaction between protons

3£y = (o)) (~15)

= (83(rg))(=2.118) fm?. (16)

However, both contributions are totally negligible, because
(83(ro1)) ~ 107%(ma)? for the ground state of H,.
Another subtle point to be clarified is the proton self-
energy correction and the corresponding definition of the
proton charge radius. This correction is insignificant for a
regular hydrogen atom but non-negligible for muonic
hydrogen (4H). So, for consistency with the determination
of the proton charge radius r, in uH [22], we chose to
include this effect into the total energy of H,. Following
[23], we do so in a minimal way, by including only
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logarithmic terms, and the nonlogarithmic terms are
absorbed into the mean square charge radius r%,.

Numerical calculation.—QED corrections involve sev-
eral nontrivial terms: the Bethe logarithm In k, the inter-
particle Dirac delta (5(r,;)), and the Araki-Sucher term
(1/r3,).. Because the naECG basis does not reproduce the
electron-electron and electron-nucleus cusps of the wave
function, the two latter terms exhibit a slow convergence if
calculated directly from their definitions. Therefore, to
increase numerical performance, it is crucial to transform
singular operators to a more regular form, whose behavior
is less sensitive to the local inaccuracies of the wave
function. For this purpose, we generalized known relations
[14,24] and obtained the following expectation value
identities with a, » =0, 1, 2, 3

2m,m
47183 — Zah
< T (rab)> ma+mb
2 1 1
“(E-V)=Y —p.—p. ). (17
<( (=) §ijcpcruhpc> (17)
1 2m,m
— ) =(147)(4z8 ——ab
<r(31b>e (1+y)(4n (ruh)>+mu+mh
2Inr,, 1 _lInry
—(E-V)=>» —p,—— , 18
><< - (E-V) E o pc> (18)

1 m,my, 1. 12
<r?zb>€ B my +my, <§C:mc be rib be

1
—2(E—V)r7i 127[53(rab)> . (19)
ab €

where + is for particles with the same and — with opposite
charges, respectively. Results for the expectation values
extrapolated to the infinite basis size, along with their
estimated uncertainty, are presented in Table I.

Bethe logarithm.—Among all the terms in Eq. (8), the
calculation of the Bethe logarithm Ink, is the most

TABLE 1. Expectation values of the operators present in
Eq. (8). Atomic units are used throughout the Table.

Operator Expectation value

E ~1.164025 030 86(3)

(J%) 2.518270 507 19(12)
470, (8 (rax)) 11.346 476 34(9)
4r(5° (ry3)) 0.202 830 306(6)
Daxlrad)e ~7.1911043(10)
(r33)e 0.401 943 51(6)
(roi)e 0.3572154117(3)
Danlrat)e ~5.712727(17)

Z(a,x)<(b_y)<(7ax/ﬂ3zx) : (7by/riy)>

—0.25451518(18)

complicated one. We express Inkq in terms of the one-
dimensional integral

L1 () = fo—fof?
Inky = 5/0 dtt—3 (20)
with the function f(¢) defined as
f(t) = <7 k 7> oL (21)
"\ k+H-E" /) VI +2k
which has the following Taylor expansion:
F(O)=fot+ o +f30+ (fylnt+f)r* +0(P),  (22)
with the first two coefficients
fo=().  f2=-2D. (23)

The integrand in Eq. (20), as a smooth function of ¢, was
evaluated at 200 equally spaced points in the range
t €[0,1], which enabled relative accuracy higher than
107, In the numerical calculation of f(¢), the resolvent
in Eq. (21) was represented in terms of pseudostates
of the form ¢ = 7,,¢ for all interparticle coordinates.
The nonlinear parameters of @' are found by a maxi-
mization of f. In the particular case of t =1 (k =0),
f can be evaluated analytically using the generalized
Thomas-Reiche-Kuhn sum rule [25] (J(H — E)~'J) =
3(1+m/m,). We used this opportunity to assess the
completeness of the pseudostates space and to estimate
uncertainties.

For the given size N of the wave function ¥ expansion,
the size of the pseudostate basis set was chosen as
N = %N, which appeared to be sufficient for most of
the ¢ points. There are also additional factors taken into
account for the accurate representation of the resolvent in
Eq. (21). The powers of internuclear coordinate r;,
analogously to the wave function, are restricted to even
integers and are generated randomly for each basis function
from the log-normal distribution within the 0-80 range.
However, for small values of # (< 0.1), due to a cancellation
in the numerator of Eq. (20), an additional tuning of the
distribution was made and N’ = 2N was set to achieve high
accuracy. Moreover, in this critical region of small ¢, the
function f(¢) was expanded in a power series with f3, fy4,
and fy; coefficients deduced from the known high-k
expansion by Korobov [26] (1 = u/m)

fr=8u'D,

Sar = 16#'7)’
4 Foux Thy !
fi=—5 Z <:Tr%> - 21)(1 +4,u’1n'%—4//>.
K @by \NaxToy/ e

(24)
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TABLE II. Convergence of the nonrelativistic energy E and the
Bethe logarithm In k, with the increasing size N of the naECG
basis set. The final uncertainty for Ink, is due to numerical
inaccuracy of f(z) at small 7.

N E In ko

128 —1.164 023 669 155 3.016586 1
256 —1.164 024 987 878 3.018 1370
512 —1.164 025027 334 3.01825891
1024 —1.164 025030593 3.01830173
2048 —1.164 025030 843 3.018 30390
o0 —1.164 025030 86(3) 3.018 304 9(15)

The higher order expansion terms are obtained from the fit
to numerical values of f(7). As a test, f, = 72.11486(7)
calculated using the above formula, agrees well with 72.0
(3) obtained from the numerical fit. In order to perform
integration in Eq. (20), we use a polynomial interpolation
of the integrand for ¢ > 0.1, and power expansion for the
critical region ¢ € [0,0.1].

The convergence of the Bethe logarithm with the
increasing size of the naECG basis is shown in Table II.
Six significant figures can be considered stable and the
estimated relative accuracy is a half ppm. Our recom-
mended value Inky = 3.0183049(15) is consistent with
3.0188 obtained in the framework of adiabatic approxima-
tion [16], and the difference between them divided by In &
is smaller than the electron-proton mass ratio. An analo-
gous difference of 0.0005 between adiabatic and non-
adiabatic In k, has been noted for H2+ [16,27].

Higher order QED.—Because of the significant increase
in the accuracy of the QED correction achieved in this
work, the dominating contribution to the uncertainty comes
from the higher order E(7) correction. Currently, an explicit
form of this correction is unknown, which prevents its
accurate evaluation. Its first estimation, made within the BO

TABLE IIL

approximation framework, was reported in Ref. [17]. Here,
we account for several additional terms, namely,

1
ED %7[<Z53(Fax)> {— [Ago +Ag) Ina™?
n

1 1
+AgIn’a ]+ Bs + _3C40} —2ED(H),  (25)
T T

and assume a conservative 25% uncertainty. All the
coefficients A, B, and C can be found in Ref. [18], and
we use the values for the 1S state of H. The dominating
term is the one containing A, = —1 and inclusion of all the
other terms decreases E(7) by about 14%.

Summary.—Theoretical predictions for all the known
contributions to Dy and D are assembled in Table III
By D, ; we denote there the dissociation energy of the
hydrogen molecule in the state with the vibrational number
v and rotational J. The nonrelativistic contribution was
calculated directly for Dy and Dy ;. All the corrections
were calculated for Dy and separately for the rotational
excitation energy using NAPT. However, the QED correc-
tion for this excitation energy was calculated within the BO
approximation only, but the related uncertainty is small.
Finally, the dissociation energy Dj; was obtained as the
difference between Dy and the rotational excitation.

The improved theoretical result for the ground state
dissociation energy D, of the hydrogen molecule is in
very good agreement with the most recent measurements
[2,7], but their uncertainties are an order of magnitude
larger. The situation is more intriguing for the dissociation
energy Dy ; of the first rotationally excited state. Although,
our theoretical prediction differs by 2¢ from the equally
accurate recent measurement [6], it is in very good agree-
ment with the twice as accurate measurement reported in
the preceding Letter [31], see Table III.

(6)

Theoretical predictions for the dissociation energy budget for the ground level of H,. E is a second

order correction due to relativistic BO potential; Egg is the finite nuclear size correction with 7, = 0.84087(39) fm

[28]. All the energy entries are given in cm™.

Contribution Dy Dy, (0,1) - (0,0) Remarks and references
E®? 36 118.797 746 10(3) 36000.31248566(2) 118.48526044(4) nalC; [29]

E® —0.5312156(5) —0.5337992(5) 0.00258356(1) naECG; [12], this work
E6) ~0.19491043(15) ~0.1938877(11)  —0.0010227(11) naBCG; [14], this work
E®©) —0.002 067(6) —0.002 058(6) —0.000008 9 BO; [17]

Eggg 0.000 009 2 0.000009 1 0.000 000 1 BO; this work

ET) 0.000 101(25) 0.000 101(25) 0.0000005(1)  BO; [14,17]

El<:4$> —0.000031 —0.000031 —0.000 0002 BO; [14.17]

Total 36 118.069 632(26) 35999.582 820(26) 118.486 812 7(11)

Exp. 36 118.069 62(37) 35999.582 894(25) 118.486 8(1) [2], [6], [30]

Diff. —0.00001(37) 0.000 074(36) 0.0000(1)

Exp. 36 118.06945(31) 35999.582 834(11) [71, [31]

Diff. —0.000 18(31) 0.000 014(28)
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Conclusions.—This work concludes efforts to increase the
accuracy of theoretical predictions for the dissociation
energy of H,, feasible within the framework of the existing
theory. Further progress is likely, provided an explicit
formula for the E(7) term in the expansion [Eq. (1)] is found.
Currently, the main uncertainty of 25 X 107° cm™!
(0.75 MHz) comes from this correction, which for the time
being, is estimated using the known atomic hydrogen
formula, see Eq. (25). Despite this approximation, the new
results for dissociation energies of the hydrogen molecule
become the most accurate ever obtained for any molecule.

Regarding the possibility of determination of the
Rydberg constant or the proton charge radius, let us point
out that in the atomic hydrogen, apart from 1S-2S tran-
sition, there is no other narrow transition, and the present
charge radius determination relies on an average of many
transitions with much larger natural linewidth than the
accuracy of individual measurements. The alternative route
suggested by Merkt [32] is to use the ionization energy of
the hydrogen molecule, as a second transition, because its
natural width is exactly zero. The determination of the
dissociation energy in Refs. [2,6,7,31] is in fact the
measurement of the ionization energy E(H,, IP),

E(H,,1IP) = Dy(H,) + E(H,IP) — Do(Hy)  (26)

which for ortho-H, amounts to about 124357 cm~! [6].
The ratio with the precisely known 2S-1§ transition
82259 cm~! [33] is independent of the Rydberg constant,
but depends on the proton charge radius through

E(H,.IP)

BT ) 512 14% 1070 2/fm2. (27
E(H,2S — 1S) x rp/fm. (27)

Consequently, one needs to achieve

SE(H,, IP) = E(H,25-15)2 x 0.01 x 1.4 x 10710 2 /fm?
= 1.6 x 1077 cm™! (5 kHz) (28)

accuracy for the ionization energy of H, to obtain the
proton radius with 1% precision. Among the contributions
to E(H,, IP) in Eq. (26), the last two are known with much
higher precision [34] than required. Therefore, it is only
Dy (H,) which needs to be improved. This can be achieved
by the evaluation of the nonadiabatic £, E() in the BO
approximation, and the E®) contribution using the atomic
hydrogen theory. Among them, the calculation of E(7) is the
most demanding task, since it has not yet been accom-
plished for helium or for any other system except the
hydrogen atom and HJ ion [18,35], but it is feasible using
present-day technologies.
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