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Entanglement suppression in the strong-interaction S matrix is shown to be correlated with
approximate spin-flavor symmetries that are observed in low-energy baryon interactions, the Wigner
SUð4Þ symmetry for two flavors and an SUð16Þ symmetry for three flavors. We conjecture that
dynamical entanglement suppression is a property of the strong interactions in the infrared, giving rise to
these emergent symmetries and providing powerful constraints that predict the nature of nuclear and
hypernuclear forces in dense matter.
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Understanding approximate global symmetries in strong
interactions has played an important historical role in the
development of the theory of quantum chromodynamics
(QCD). Baryon number symmetry arises in QCD because it
is impossible to include a marginal or relevant interaction
consistent with Lorentz and gauge symmetry that violates
the baryon number, while the axial and vector flavor
symmetries are understood to be due to the small ratio
of quark masses (and their differences) to the QCD scale.
The approximate low-energy SUð2nfÞ spin-flavor sym-
metry for nf ¼ 2, 3 flavors that relates spin-1=2 and spin-
3=2 baryons can be understood as arising at leading order
(LO) in the large-Nc expansion, where Nc is the number of
colors [1,2]. In low-energy nuclear physics, a different
spin-flavor symmetry is observed in the structure of light
nuclei and their β-decay rates, namely, Wigner’s SUð4Þ
symmetry, where the two spin states of the neutron and of
the proton transform as the four-dimensional fundamental
representation [3–5]. It has been shown that this symmetry
also arises from the large-Nc expansion at energies below
the Δ mass [6–8]. The agreement of large-Nc predictions
with nuclear phenomenology has been extended to higher-
order interactions [9–12], three-nucleon systems [13–15],
and studies of hadronic parity violation [16–18]. Recently,
however, lattice QCD computations for nf ¼ 3 have
revealed an emergent SUð16Þ symmetry in low-energy
interactions of the baryon octet—analogous to Wigner’s
SUð4Þ, but with the two spin states of each of the eight
baryons transforming as the 16-dimensional representation
of SUð16Þ [19]. This low-energy symmetry has been
lacking an explanation from QCD. In this Letter, we show
that both Wigner’s SUð4Þ symmetry for nf ¼ 2 and
SUð16Þ for nf ¼ 3 correspond to fixed lines of minimal
fluctuations of quantum entanglement in the S matrix for
baryon-baryon scattering; we propose entanglement sup-
pression to be a dynamical property of QCD that is the

origin of these emergent symmetries. (Note that this
proposal for the suppression of entanglement fluctuations
is distinct from the methods of Ref. [20], where a principle
of maximum entanglement is proposed to constrain quan-
tum electrodynamics and weak interactions.)
Of the many features of quantum mechanics and

quantum field theory (QFT) that dictate the behavior of
subatomic particles, entanglement and its associated non-
locality are perhaps the most striking in their contrast to
everyday experience. The degree to which a system is
entangled, or its deviation from a tensor-product structure,
provides a measure of how “nonclassical” it is. The
importance of entanglement as a feature of quantum theory
has been known since the work of Einstein, Podolsky, and
Rosen [21] and later pioneering papers [22–24] and has
become a core ingredient in quantum information science,
communication, and perhaps understanding the very fabric
of spacetime [25–27]. Despite this long history, the implica-
tions of entanglement in QFTs, e.g., Refs. [28–39], and, in
particular, for experimental observables in high-energy and
heavy-ion collisions are only now starting to be explored
[20,40–49]. Here we study the role of entanglement in low-
energy nuclear interactions.
In general, a low-energy scattering event can entangle

position, spin, and flavor quantum numbers, and it is
therefore natural to assign an entanglement power to the
S matrix for nucleon-nucleon scattering. We choose to
define the entanglement power of the S matrix in a two-
particle spin space [50,51], noting that this choice is not
unique and that others will be explored elsewhere [52]. This
is determined by the action of the S matrix on an incoming
two-particle tensor-product state with randomly oriented
spins, jψ ini ¼ R̂ðΩ1Þj↑i1 ⊗ R̂ðΩ2Þj↑i2, where R̂ðΩjÞ is
the rotation operator acting in the jth spin-1

2
space, and all

other quantum numbers associated with the states have
been suppressed. For low-energy processes, this random

PHYSICAL REVIEW LETTERS 122, 102001 (2019)

0031-9007=19=122(10)=102001(6) 102001-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.102001&domain=pdf&date_stamp=2019-03-14
https://doi.org/10.1103/PhysRevLett.122.102001
https://doi.org/10.1103/PhysRevLett.122.102001
https://doi.org/10.1103/PhysRevLett.122.102001
https://doi.org/10.1103/PhysRevLett.122.102001


spin pair projects onto the two states with total spin
S ¼ 0, 1 and associated phase shifts δ0;1, in the 1S0 and
3S1 channels, respectively, with projections onto higher
angular momentum states suppressed by powers of the
nucleon momenta. The entanglement power E of the S
matrix Ŝ is defined as

EðŜÞ ¼ 1 −
Z

dΩ1

4π

dΩ2

4π
Tr1½ρ̂21�; ð1Þ

where ρ̂1 ¼ Tr2½ρ̂12� is the reduced density matrix for
particle 1 of the two-particle density matrix ρ̂12 ¼
jψoutihψoutj with jψouti ¼ Ŝjψ ini. By describing the aver-
age action of Ŝ to transition a tensor-product state to an
entangled state, the entanglement power expresses a state-
independent entanglement measure that vanishes when
jψouti remains a tensor-product state for any jψ ini.
Following the analysis of Ref. [20], we consider the

spin-space entanglement of two distinguishable particles,
the proton and neutron for nf ¼ 2 QCD. Neglecting the
small tensor-force-induced mixing of the 3S1 channel with
the 3D1 channel, the S matrix for low-energy scattering
below the inelastic threshold in these sectors can be
decomposed as

Ŝ ¼ 1

4
ð3ei2δ1 þ ei2δ0Þ1̂þ 1

4
ðei2δ1 − ei2δ0Þσ̂ · σ̂; ð2Þ

where 1̂ ¼ Î2 ⊗ Î2 and σ̂ · σ̂ ¼ P
3
α¼1 σ̂

α ⊗ σ̂α. It follows
that the entanglement power of Ŝ is

EðŜÞ ¼ 1

6
sin2½2ðδ1 − δ0Þ�; ð3Þ

which vanishes when δ1 − δ0 ¼ mðπ=2Þ for any integer m.
This includes the SUð4Þ symmetric case δ1 ¼ δ0, where the
coefficient of σ̂ · σ̂ vanishes (indicating the six-dimensional
irrep). Special fixed points where the entanglement power
vanishes occur when the phase shifts both vanish,
δ1 ¼ δ0 ¼ 0, or are both at unitarity, δ1 ¼ δ0 ¼ ðπ=2Þ, or
when δ1 ¼ 0, δ0 ¼ ðπ=2Þ or δ1 ¼ ðπ=2Þ, δ0 ¼ 0. The S
matrices at these fixed points with vanishing entanglement
power are Ŝ ¼ �1̂ and �ð1̂þ σ̂ · σ̂Þ=2. (The S matrices at
the four fixed points realize a representation of the Klein
four-group, Z2 ⊗ Z2.)
The entanglement power in nature is plotted in Fig. 1 as a

function of the center-of-mass nucleon momentum p, up to
the pion production threshold, making use of the 1S0 and
3S1 phase shifts derived from the analyses of Refs. [53–56].
The four regions indicated are distinguished by the role of
nonperturbative physics. Region I shows that the entangle-
ment power approaches zero in the limit p → 0, as will be
the case for any finite range interaction not at unitarity. At
momenta around the scale of the inverse scattering lengths,

region II, poles and resonances of Ŝ produce highly
entangling interactions. This nonperturbative structure
could be considered a source of ultralow-momentum
entanglement power; experimental evidence for this is
expected to be found in the vanishing modification of
np-scattering quantum correlations at 19.465(42) MeV,
where the phase shifts differ by π=2 and jp↑; n↓i scatters
into jp↓; n↑i. In region IV, where energies are of the order
of the chiral symmetry-breaking scale, the entangling
interactions of quark and gluon degrees of freedom become
prominent. It is region III that is the main focus of this
Letter—away from the far-infrared structure but with
nucleons as fundamental degrees of freedom, the entangle-
ment power is suppressed. Once relativistic corrections
and 3S1-3D1 mixing—parametrically suppressed at low
energy—are included in Eq. (2), EðŜÞ is expected to remain
suppressed but nonzero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in

recent years by considering low-energy effective field
theories (EFTs), constrained by data from nucleon scatter-
ing. The δ0;1 phase shifts can be computed for energies
below the pion mass, from the pionless EFT for nucleon-
nucleon interactions. The leading interaction in the effec-
tive Lagrangian is

L
nf¼2

LO ¼ −
1

2
CSðN†NÞ2 − 1

2
CTðN†σNÞ · ðN†σNÞ; ð4Þ

where N represents both spin states of the proton and
neutron fields. These interactions can be reexpressed as
contact interactions in the 1S0 and 3S1 channels with
couplings C̄0 ¼ ðCS − 3CTÞ and C̄1 ¼ ðCS þ CTÞ, respec-
tively, where the two couplings are fit to reproduce the 1S0
and 3S1 scattering lengths. The C̄ coefficients both run with
the renormalization group as described in Refs. [59,60]
with a stable IR fixed point at C̄ ¼ 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point at

FIG. 1. The entanglement power EðŜÞ of the S matrix as a
function of p, the center-of-mass nucleon momentum. The 1S0
and 3S1 phase shifts used to calculate EðŜÞ were taken from four
different models [53–57] to provide a naïve estimate of system-
atic uncertainties. Data for this figure may be found in Table 2 in
Supplemental Material [58].
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C̄ ¼ C⋆, corresponding to a divergent scattering length and
constant phase shift of δ ¼ π=2 (the “unitary” fixed point).
At the four fixed points (described above), where fC̄0; C̄1g
take the values 0 or C⋆, the theory has a conformal
(“Schrödinger”) symmetry; there is also a fixed line of
enhanced symmetry at CT ¼ 0, or equivalently C̄0 ¼ C̄1,
where the theory possesses the Wigner SUð4Þ symmetry, as
apparent from the form of Eq. (4) with CT ¼ 0. When
fitting to the scattering lengths, one finds CT ≪ CS ≃ C⋆,
since scattering lengths are unnaturally large in both
channels. Therefore, low-energy QCD has approximate
SUð4Þ symmetry and sits close to the fC⋆; C⋆g conformal
fixed point [61]. The emergence of SUð4Þ symmetry (but
not necessarily conformal symmetry) follows from the
large-Nc expansion where CT=CS ¼ Oð1=N2

cÞ [6].
The symmetry points of the EFT can be related to

minimization of the entanglement power of the S matrix.
Figure 2 shows a density plot of EðŜÞ as computed from
Eq. (4) in Eq. (7) in Supplemental Material [58] averaged
over momenta 0 ≤ p ≤ mπ=2, as a function of the cou-
plings C̄0;1 renormalized at μ ¼ mπ=2 and rescaled by
C⋆ ¼ −ð4π=MμÞ with M the nucleon mass. Superimposed
in white are the four conformal fixed points, as well as the
Wigner SUð4Þ fixed line. The minima of the low-energy-
integrated entanglement power of the S matrix coincide
with the points of enhanced symmetry in the EFT; the
SUð4Þ line corresponds to δ0 ¼ δ1 for all momenta, while
the conformal points off the SUð4Þ line correspond to
jδ0 − δ1j ¼ π=2.
In the nf ¼ 2 case, the large-Nc expansion gives a

similar expectation for SUð4Þ symmetry as does a principle
of entanglement suppression. However, an analogous
equivalence does not hold for nf ¼ 3, as the large-Nc

expansion predicts the conventional approximate SUð6Þ
spin-flavor symmetry, while entanglement suppression
predicts a much larger SUð16Þ symmetry under which
the two spin states of the baryon octet transform as a
16-dimensional representation. To see this, consider the
EFT in the SUð3Þ flavor symmetry limit of QCD, where six
independent contact operators contribute at LO [11]:

L
nf¼3

LO ¼ −c1hB†
i BiB

†
jBji − c2hB†

i BjB
†
jBii

− c3hB†
i B

†
jBiBji − c4hB†

i B
†
jBjBii

− c5hB†
i BiihB†

jBji − c6hB†
i BjihB†

jBii; ð5Þ

where h…i denotes a trace in flavor space and Bi is the
3 × 3 octet-baryon matrix where the subscript i ¼ 1, 2

denotes spin. L
nf¼3

LO is invariant under rotations and the
transformation B → VBV†, where V is an SUð3Þmatrix. In
the large-Nc limit of QCD, an SUð6Þ spin-flavor symmetry
emerges relating the six coefficients ci in Eq. (5) to two
independent coefficients a and b [6] in the SUð6Þ invariant
Lagrange density:

c1 ¼ −
7

27
b; c2 ¼

1

9
b; c3 ¼

10

81
b;

c4 ¼ −
14

81
b; c5 ¼ aþ 2

9
b; c6 ¼ −

1

9
b: ð6Þ

A comprehensive set of lattice QCD calculations of light
nuclei, hypernuclei, and low-energy baryon-baryon scatter-
ing in the limit of SUð3Þ flavor symmetry by the NPLQCD
Collaboration [19,62,63] demonstrates that the ci are
consistent with this predicted SUð6Þ spin-flavor symmetry
[19]. The two-baryon sector calculated with mπ∼800MeV
is found to be unnatural [19,62,63], with a scattering length
that is larger than the range of the interaction, and hence
better described by the power counting of van Kolck [64]
and Kaplan, Savage, and Wise [59,60,65]. Furthermore, the
values of c1, c2, c3, c4, and c6 are calculated to be much
smaller than c5, indicating that b ≪ a [19,62,63]. When
b ¼ 0, the SUð6Þ is enlarged to an emergent SUð16Þ spin-
flavor symmetry [19], where the baryon states populate the
fundamental of SUð16Þ:

L
nf¼3

LO → −
1

2
cSðB†BÞ2; B ¼ ðp↑; p↓; n↑; n↓;Λ↑;…ÞT;

ð7Þ

with cS ¼ 2c5.
The existence of SUð16Þ symmetry and b ¼ 0 does not

follow from the large-Nc expansion but does follow from
entanglement suppression. The entanglement power of the
S matrix in spin space from the nf ¼ 3 interactions in
Eq. (5) can be addressed by considering its action on states
of distinguishable baryons. Computing the entanglement

FIG. 2. Density plot of the entanglement power EðŜÞ of the S
matrix (see Eq. (7) in Supplemental Material [58]) integrated over
center-of-mass momenta 0 ≤ p ≤ mπ=2 versus the Lagrangian
couplings C̄0=C⋆ and C̄1=C⋆, where C⋆ is the critical coupling
for unitary scattering. The entanglement power vanishes at the
four conformal fixed points (white points) as well as the fixed line
corresponding to Wigner SUð4Þ symmetry (white diagonal line).
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power EðŜÞ for more than six distinct two-baryon channels
with nonidentical particles—e.g., ΛN, Ξ−p—shows that
zero entanglement power occurs at the SUð16Þ point where
all the cn couplings vanish except for c5 (indicating the
120-dimensional irrep), which is unconstrained (also, all
LO scattering matrices in the J ¼ 0 and J ¼ 1mixed-flavor
sectors are diagonal [11,19]). Thus, the principle of
entanglement suppression gives rise to an approximate
symmetry, apparent in lattice QCD calculations
[19,62,63], that does not follow from the large-Nc limit.
We conclude that the large-Nc limit of QCD does not
provide a sufficiently stringent constraint to produce a
low-energy EFT that does not entangle, which could not
be deduced from the nf ¼ 2 sector alone [6]. Thus, the
entanglement power of the S matrix appears to be an
important ingredient in dictating the properties and
relative size of interactions in low-energy nuclear and
hypernuclear systems.
While in nuclei and hypernuclei contributions to binding

from three-body forces between nucleons and hyperons are
small compared with those from two-baryon forces, they
cannot be neglected and become more important with
increasing density. To understand whether entanglement
suppression dictates approximate SUð16Þ symmetry in
these interactions as well, we take a more general approach
rather than computing the multibaryon S matrix in various
channels to constrain couplings. We begin by assuming
exact SUð2Þspin × SUð3Þflavor symmetry, where corrections
due to SUð3Þ violation from quark mass differences can be
incorporated in the usual way. Even in the degenerate quark
mass limit, this means restricting ourselves to considering
only interactions that do not couple spin to orbital angular
momentum. While such spin-orbit and tensor interactions
can be important in heavy nuclei, they are suppressed by
powers of the baryon momenta and do not enter the IR limit
of the effective theory. It is then argued that entanglement
suppression requires the interactions to respect a Uð1Þ16
symmetry, conserving the particle number individually for
each of the octet baryon spin states. To see why this is a
reasonable assumption, consider a one-body operator
(which need not be local) that violates the Uð1Þ16 sym-
metry, e.g.,

Θ̂ ¼
Z

d3vd3u½fðv − uÞα†vβu þ H:c:�; ð8Þ

where α and β are annihilation operators for components of
B with α ≠ β, u and v are spatial coordinates, and f is a
form factor. This operator implements the transformation,
e.g.,

Θ̂jαx; βy; γzi ¼
Z

d3w½fðw − yÞjαx; αw; γzi

þ f�ðx − wÞjβw; βy; γzi�; ð9Þ

producing an entangled state, even if fðx − yÞ ¼
δ3ðx − yÞ, from which it can be concluded that the
Uð1Þ16 symmetry is a necessary condition to forbid
entangling interactions. (The converse is not true: It is
possible to show that there exist entangling interactions
which preserve Uð1Þ16 symmetry [52].) It follows from
simultaneous exact SUð2Þ × SUð3Þ andUð1Þ16 symmetries
that the LO EFT must respect the full SUð16Þ symmetry by
the following argument. The charges Qα ¼ B†ΓαB that by
assumption commute with the Hamiltonian H consist of

Γα ∈ fI16; Si ⊗ I8; I2 ⊗ ta;Mig; ð10Þ

where S1;2;3 ∈ suð2Þ are the fundamental generators of
SUð2Þ, ta ∈ suð3Þ with ðtaÞbc ¼ −ifabc for a, b, c ¼
1;…; 8 are the generators of the SUð3Þ adjoint representa-
tion with structure constants fabc, and the Mi for i ¼
1;…; 15 are a set of independent diagonal traceless 16 × 16

matrices generating Uð1Þ15, the ignored Uð1Þ symmetry
being the baryon number. Since all of the above Qα are
assumed to commute with H, it follows that their commu-
tators do as well. The full symmetry of H will be the
symmetry group generated by the closure of the Qα under
commutation. By making use of the fact that the ta generate
an irreducible representation of the suð3Þ Lie algebra and
invoking Schur’s lemma, it is possible to show that this full
symmetry algebra is suð16Þ [52].
Conjecturing that the guiding principle for low-energy

nuclear and hypernuclear forces is the suppression of
entanglement fluctuations provides important theoretical
constraints on dense matter systems. The Lagrange density
describing the nf ¼ 2 sector with vanishing entanglement
power, and therefore SUð4Þ spin-flavor symmetry, is

Lðnf¼2Þ ¼ −
X4
n¼2

1

n!
CðnÞ
S ðN†NÞn; ð11Þ

with previous notation Cð2Þ
S ¼ CS and cð2ÞS ¼ cS, while for

nf ¼ 3 with SUð16Þ spin-flavor symmetry,

Lðnf¼3Þ ¼ −
X16
n¼2

1

n!
cðnÞS ðB†BÞn: ð12Þ

Calculations of hypernuclei and hyperon-nucleon inter-
actions imposing SUð16Þ spin-flavor symmetry on the low-
energy forces are now in progress [66]. Our work suggests
that such calculations could probe the nature of entangle-
ment in strong interactions.
The Pauli exclusion principle’s requirement of antisym-

metrization produces a natural tendency for highly
entangled states of identical particles in the s channels.
It is somewhat perplexing how to understand the result
that the S matrix for baryon-baryon scattering exhibits
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screening of entanglement power when the quarks and
gluons that form the nucleon are highly entangled. It may
be the case that the nonperturbative mechanisms of confine-
ment and chiral symmetry breaking together strongly
screen entanglement fluctuations in the low-energy sector
of QCD beyond what can be identified in the large-Nc limit
of QCD.
While our work has focused on low-energy interactions,

preliminary evidence for entanglement suppression at
higher orders in a derivative expansion is seen in the
nf ¼ 2 low-energy constants (LECs) for operators up to
next-to-next-to-leading order. The contact terms of the two-
nucleon potential in the center-of-mass frame are [67]

Vcontact¼CSþCT σ⃗1 · σ⃗2þVð2Þ
contact;

Vð2Þ
contact¼C1q⃗2þC3q⃗2ðσ⃗1 · σ⃗2ÞþC6ðq⃗ · σ⃗1Þðq⃗ · σ⃗2Þ; ð13Þ

with q⃗ ¼ p⃗0 − p⃗ and p⃗, p⃗0 the initial and final nucleon
momenta, respectively. Calculating their entanglement
power, it is expected that CT , C3, and C6 will be suppressed
at low energies. Numerical values of these potential
coefficients are determined from the values of the spectro-
scopic LECs [68–70] (see Fig. 1 in Supplemental Material
[58]). At small values of the maximum scattering energy
Tmax
Lab , the coefficients of the nonentangling operators, CS

and C1, are found to be larger in magnitude than their
entangling counterparts. Furthermore, as Tmax

Lab is increased
and shorter distance scales are probed, the suppression
lessens and C6 grows. While these observations are
consistent with entanglement-suppressed LECs, work
remains to be done in understanding the mechanism that
suppresses entanglement power in the transition from QCD
to low-energy effective interactions and the full conse-
quences of this mechanism. For instance, one can envisage
a new entanglement-motivated power-counting scheme
accommodating the features found here, which provides
an improved organizational principle for interactions in
nuclear physics.
Nuclear physics, with its rich theoretical structure and

phenomenology emerging from QCD and QED in the
infrared, provides a unique forum for the study of funda-
mental properties of quantum entanglement. We conjecture
that the suppression of entanglement is an important
element of strong-interaction physics that is correlated
with enhanced emergent symmetries.
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