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In this Letter, we suggest a natural spinor-helicity formalism for massless fields in four-dimensional
anti–de Sitter space (AdS4). It is based on the standard realization of the AdS4 isometry algebra soð3; 2Þ in
terms of differential operators acting on slð2;CÞ spinor variables. We start by deriving the anti–de Sitter
counterpart of plane waves in flat space and then use them to evaluate simple scattering amplitudes. Finally,
based on symmetry arguments, we classify all three-point amplitudes involving massless spinning fields.
As in flat space, we find that the spinor-helicity formalism allows us to construct additional consistent
interactions as compared to approaches employing Lorentz tensors.
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Introduction.—The spinor-helicity formalism by now
has established itself as the most efficient framework for
representing on-shell scattering amplitudes of massless
particles in the 4D Minkowski space; see, e.g., [1,2] for
reviews. The success of this formalism in the original setup
has motivated various extensions—to other dimensions
[3–7] and to massive particles [8–10]. At the same time,
literature on the spinor-helicity formalism in curved space
remains very limited. In [11], a version of the spinor-
helicity formalism for massless fields in four-dimensional
de Sitter space (dS4) was proposed. Despite its virtues, in
some aspects, it departs from the spinor-helicity formalism
in flat space; e.g., it loses manifest Lorentz covariance.
In this Letter, we make an alternative proposal for the

spinor-helicity formalism in four-dimensional anti–de
Sitter space (AdS4), which has all features of the flat space
formalism and, in particular, reduces to the latter for
conformal theories [12]. In this respect, it is worth
mentioning the twistor approach [13], which is naturally
adapted to describing fields in conformally flat spaces.
Upon specializing to anti–de Sitter (AdS) backgrounds, the
twistor approach can be used to obtain certain representa-
tions of massless scattering amplitudes in AdS4 [14–20].
Our approach provides a different perspective on these
results because it allows us to compute amplitudes directly
from the space-time action and does not rely on a twistor-
space description of the massless theories in question [21].
Besides having obvious motivations—e.g., development

of tools that could facilitate computations of holographic/
inflationary correlators and simplify their analytic structure—

we are also interested in gaining a better understanding of
higher-spin interactions in flat and curved backgrounds and
clarifying their relation. In particular, as was emphasized
recently [25–27], in flat space, the spinor-helicity formalism
and the light-cone approach admit additional cubic higher-
spin vertices as compared to those built of Lorentz tensors.
Moreover, these additional vertices are crucial for consistency
of the higher-spin interactions [28,29] and are present in
chiral higher-spin theories [30–32]; see also [33] for a related
earlier result. Until recently, the fate of additional interactions
in AdS was not clear. In [34], the expectation that they also
exist in AdS4 was confirmed in the light-cone approach.
Below, we classify all consistent three-point amplitudes for
massless particles in AdS4 using the spinor-helicity formal-
ism and find agreement with [34].
Spinor-helicity and flat space.—The basic fact about

massless representations in the 4D Minkowski space is that
they are labelled by two quantum numbers—helicity h and
momentum p. Using the isomorphism soð3; 1Þ ∼ slð2;CÞ,
we have pμ ¼ − 1

2
ðσμÞ _ααλαλ̄ _α. For h ≥ 0, the associated

state can be represented by a potential

φh
ν1…νh ¼ εþν1…εþνhe

ipx; ð1Þ
where εþν is a polarization vector defined by

εþν ¼ ðσνÞ _ααμαλ̄ _α
μβλβ

: ð2Þ

Here, μ is an auxiliary spinor and the ambiguity of its
choice reflects gauge ambiguity. Alternatively, states can be
represented by gauge invariant field strengths. For Eq. (1),
the field strength reads

Fh
_α1… _α2h

¼ λ̄ _α1…λ̄ _α2he
ipx: ð3Þ

Extension to h < 0 and to fermions is straightforward.
Once plane wave solutions Eq. (1) are available, one can
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evaluate amplitudes using the Feynman rules in any theory
of massless fields.
The amplitudes are strongly constrained by the Poincaré

covariance. These constraints allow us to fix three-point
amplitudes up to a coupling constant [35] to be

AIðh1; h2; h3Þ ¼ ½12�d12;3 ½23�d23;1 ½31�d31;2δ4ðpÞ;
AIIðh1; h2; h3Þ ¼ h12i−d12;3h23i−d23;1h31i−d31;2δ4ðpÞ: ð4Þ

Here, ½ij�≡ϵ _α _βλ̄
_α
i λ̄

_β
j , hiji≡ϵαβλ

α
1λ

β
2, and dij;k≡hiþhj−hk;

and p≡P
i pi is the total momentum. To make Eq. (4)

nontrivial, one assumes that the momenta are complex;
hence, λ and λ̄ are not complex conjugate to each other.
Then, AI (AII) is singular for

P
i hi < 0 (

P
i hi > 0) in the

limit of real momenta and should be dropped as physically
irrelevant.
AdS4 and plane waves.—Massless representations of

the AdS4 isometry algebra soð3; 2Þ can be obtained by
deforming the flat space translationgenerator as follows [36]:

Pα _α ¼ λαλ̄ _α − R−2∂=∂λα∂=∂λ̄ _α; ð5Þ

where R is the AdS radius. This realization of massless
representations is often referred to as the twisted adjoint
representation [39]. Similarly to what happens in flat space,
all algebra generators commute with the helicity operator
2H ≡ λ̄ _α∂̄ _α − λα∂α, which allows us to split the representa-
tion space into representations of definite helicity.
For our further purposes, it will be convenient to choose

coordinates in AdS that make Lorentz symmetry manifest.
Starting from the ambient space description of AdS as a
hyperboloid XMXM ¼ −R2, M ¼ 0; 1;…; 4, and making
the stereographic projection from XM ¼ ð0;…; 0;−RÞ,
followed by the appropriate rescaling, we arrive at intrinsic
coordinates xμ, μ ¼ 0, 1, 2, 3, with the metric

ds2 ¼
�
1 −

x2

4R2

�−2
ημνdxμdxν: ð6Þ

The AdS boundary in these coordinates is given by x2 ¼
4R2, and the patch x2 < 4R2 (x2 > 4R2) corresponds to
X4 > −R (X4 > −R) in ambient coordinates. We will refer
to these patches as the inner and outer patches, whereas
their union will be referred to as the global AdS. Finally,
we note that the inversion xμ ↔ xμð4R2=x2Þ acts as the
reflection with respect to the origin in ambient space.
The AdS isometries act on bulk fields by Lie derivatives

along Killing vectors. In our analysis, the Lorentz sym-
metry will be manifest, and so we only specify Killing
vectors associated with deformed translations. They act on
scalar fields by

Pa ¼ −i
�
1þ x2

4R2

�
δμa

∂
∂xμ þ i

xa
2R2

xμ
∂
∂xμ : ð7Þ

To deal with spinning fields in terms of spinors, we
introduce a local Lorentz frame by means of the frame field

eaμ ¼
�
1 −

x2

4R2

�−1
δaμ; ð8Þ

where a ¼ 0, 1, 2, 3. It can be used to convert tensor
fields from the coordinate basis to the local Lorentz basis,
e.g., Aa ¼ eaμAμ. The frame field eaμ transforms as a 1-form
with respect to diffeomorphisms. It is not hard to check that
diffeomorphisms along Eq. (7) do not leave eaμ invariant.
One can, however, complement them with compensating
local Lorentz transformations so that the frame field
becomes invariant. These compensating local Lorentz
transformations then act on all fields carrying local
Lorentz indices according to their index structure. In
particular, for local Lorentz spinors, we have

ðδLPα _αλ̄Þ _β ¼
i

4R2
ðδ _β_αxα_γ þ ϵ _β _δxα_δϵ_γ _αÞλ̄_γ;

ðδLPα _αλÞβ ¼
i

4R2
ðδβαxγ _α þ ϵβδxδ _αϵγαÞλγ: ð9Þ

All spinor indices that we will encounter below refer to the
local Lorentz basis.
Now, we will find the AdS counterpart of the flat plane

wave solutions [40]. As in flat space, this is necessary to give
the amplitudes we are going to find later a familiar field-
theoretic interpretation. The plane waves will be derived
based on a consideration that they should serve as intertwin-
ing kernels between two representations—the spinor-helicity
representation and the space-time representation. We will
focus on plane waves for field strengths because these are
gauge invariant and do not require any auxiliary objects, such
as reference spinors. Then, the Lorentz invariance requires
that the indices of field strengths can only be carried by λα, λ̄ _α,
ðxλÞ _α ≡ xα _αλ _α or ðxλ̄Þα ≡ xα _αλ̄ _α. All the remaining spinor
indices should be covariantly contracted, which implies that
plane waves may also depend on two scalars: xα _αλαλ̄ _α and
xα _αx _αα. Finally, we require that the action of the deformed
translations on the plane wave in representation (5) agrees
with that in space-time Eq. (7), supplemented with compen-
sating Lorentz transformations Eq. (9). This results in a
differential equation that fixes the functional dependence of
plane waves on xα _αλαλ̄ _α and xα _αx _αα. For h ≥ 0, it has four
linearly independent solutions

Frji
_α1… _α2h

¼ λ̄ _α1…λ̄ _α2h

�
1 −

x2

4R2

�
1þh

þ
eipx;

Frjo
_α1… _α2h

¼ λ̄ _α1…λ̄ _α2h

�
1 −

x2

4R2

�
1þh

−
eipx;

Fsji
α1…α2h ¼

ðxλ̄Þα1…ðxλ̄Þα2h
ðx2Þh

�
1 −

4R2

x2

�
1þh

þ
eipx

4R2

x2 ;

Fsjo
α1…α2h ¼

ðxλ̄Þα1…ðxλ̄Þα2h
ðx2Þh

�
1 −

4R2

x2

�
1þh

−
eipx

4R2

x2 ; ð10Þ
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where xþ ≡ xθðxÞ and x− ≡ −xθð−xÞ. Analogously, solu-
tions can be constructed for h < 0.
These solutions have the following properties: Plane

waves Frji (Frjo) are supported on the inner (outer) patch
that is for x2 < 4R2 (x2 > 4R2). The inversion maps Frji ↔
Fsjo and Fsji ↔ Frjo. Solutions Fsji (Fsjo) are supported on
0 < x2 < 4R2 (x2 < 0 and x2 > 4R2). One can also con-
sider the following linear combinations [42]:

Frjg
_α1… _α2h

¼ λ̄ _α1…λ̄ _α2h

�
1−

x2

4R2

�
1þh

eipx;

Fsjg
α1…α2h ¼

ðxλ̄Þα1…ðxλ̄Þα2h
ðx2Þh

�
1−

4R2

x2

�
1þh

eipxð4R2=x2Þ; ð11Þ

which are supported on the global AdS patch. Note that both
Frjg and Frji reduce to familiar flat plane waves in the flat
space limit R → ∞. Referring to the behavior of solutions
at x → 0, we will call Frjg, Frji, and Frjo regular solutions,
whereas Fsjg, Fsji, and Fsjo will be called singular [45].
At this point, one may wonder whether splitting of the

plane wave solutions into patches as in Eq. (10) is
physically meaningful and whether it is enough to consider
only solutions supported on the global patch Eq. (11). We
do not have much to say about this, except that splitting
Eq. (10) is mathematically consistent with the symmetry
arguments that we employed to derive these solutions.
It is also worth remarking that, for fermionic fields, global

solutions Eq. (11) feature square roots leading to ambi-
guities of the analytic continuation across the interfaces
between the patches. Any such continuation is consistent
with the symmetry arguments discussed above.
Finally, we would like to comment on the role of

conformal symmetry in this discussion. Massless fields
in 4D are conformally invariant [46]; however, their
description in terms of potentials breaks conformal invari-
ance, except for the spin one case. Given that AdS and flat
spaces are conformally equivalent, this means that at least
the regular solution in Eq. (11) could have been obtained
by applying the appropriate conformal transformation on a
flat space plane wave solution. Putting it differently, our
labelling of AdS plane waves is consistent with the flat
space one modulo conformal transformations. Conformal
invariance also allows us to conclude that the spin-1
potential is given by flat formula (1). A thorough inves-
tigation of potentials will be given elsewhere.
AdS4 scattering amplitudes.—In AdS, one can define

tree-level scattering amplitudes as the classical action
evaluated on the solutions to the linearized equations of
motion. Below, we will evaluate some simple amplitudes
using plane wave solutions we have just obtained. We will
focus on the scattering of regular plane waves because
they have a smooth flat limit and a clearer connection to the
familiar flat space amplitudes [47].
In the following, we will encounter integrals [49]:

I rji
λ ≡

Z
d4x

�
1 −

x2

4R2

�
λ

þ
eipx ¼ 2λþ6Γðλþ 1ÞπiR4

�
e−iπ½λ−ð1=2Þ�

Kλþ2ð−2iRðp2 þ i0Þ1=2Þ
ð−2iRðp2 þ i0Þ1=2Þλþ2

− c:c:

�
;

Irjo
λ ≡

Z
d4x

�
1 −

x2

4R2

�
λ

−
eipx ¼ 2λþ6Γðλþ 1ÞπiR4

�
eiðπ=2Þ

Kλþ2ð−2iRðp2 þ i0Þ1=2Þ
ð−2iRðp2 þ i0Þ1=2Þλþ2

− c:c:

�
; ð12Þ

where c.c. denotes the complex conjugate, and K is the
modified Bessel function of the second kind. These
formulas should be understood in the sense of distributions
and are valid for real λ, except negative integers, where

Irji
λ and Irjo

λ diverge. In the following, we will only need

Irji
λ and Irjo

λ for integer values of λ ¼ n. We find it
convenient to use the notation

Irji
n ¼

�
1þ □p

4R2

�
n

þ
δ4ðpÞ; I rjo

n ¼
�
1þ □p

4R2

�
n

−
δ4ðpÞ;

Irjg
n ¼ Irji

n þ ð−1ÞnIrjo
n ¼

�
1þ □p

4R2

�
n
δ4ðpÞ; ð13Þ

which can be regarded as a result of a formal evaluation of
the Fourier transform according to the rule x2 → −□p.
Representation (13) makes the distributional nature of
amplitudes manifest and the flat space limit more intuitive.

Note that, for non-negative n, the right hand side for I rjg
n in

Eq. (13) is a well-defined distribution. It can be shown that
this result is consistent with representation (12); see [49].
In these terms, the n-point amplitudes for a scalar self-

interaction vertex L ¼ ½1=ðn!Þ� ffiffiffiffiffiffi−gp
φn are given by

Arji
n ¼ Irji

n−4; Arjo
n ¼ Irjo

n−4; Arjg
n ¼ I rjg

n−4; ð14Þ
depending on the AdS patch we are using. For n ¼ 3, the
amplitude is divergent, which is consistent with the standard
holographic analysis [50], where the three-point Witten
diagram for Δ ¼ 1 scalars also gives a divergent result.
Similarly, we can evaluate more general vertices involv-

ing the field strengths of spinning fields. For example, for
L ¼ 1

2

ffiffiffiffiffiffi−gp
φF _α1 _α2F _α1 _α2 , for different patches, we find

Arji
3 ¼ ½23�2Irji

1 ; Arjo
3 ¼ ½23�2I rjo

1 ;

and Arjg
3 ¼ ½23�2I rjg

1 : ð15Þ
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Amplitudes of the form Arjg
3 have been previously derived

in the twistor literature [14–20].
Finally, considering the Yang-Mills vertex, as a conse-

quence of conformal invariance, we find exactly the same
amplitude as in flat space, except that now, we also have its
variants associated with different patches. In fact, con-
formal invariance of the Yang-Mills action implies that the
same conclusion holds for all tree-level spinor-helicity
amplitudes in AdS.
Having studied some simple examples, we will now

move to the case of general spinning three-point ampli-
tudes. In contrast to the previous analysis, in which we
computed amplitudes using their field-theoretic definition,
in the following, the amplitudes will be found by requiring
correct transformation properties—that is, solely from
representation theory considerations. As in flat space, the
Lorentz covariance is manifest and is achieved by combin-
ing spinors into spinor products. Moreover, once helicities
on external lines are fixed, this imposes constraints on the
homogeneity degrees of spinors. For amplitudes being
genuine functions of spinor products, this leads to an ansatz

Aðh1; h2; h3Þ ¼ ½12�d12;3 ½23�d23;1 ½31�d31;2fðx; y; zÞ; ð16Þ

where x≡ ½12�h12i, y≡ ½23�h23i, and z≡ ½31�h31i. It only
remains to impose correct transformation properties with
respect to deformed translations

ðP1
α _α þ P2

α _α þ P3
α _αÞAðh1; h2; h3Þ ¼ 0: ð17Þ

This gives a system of differential equations on fðx; y; zÞ. It
can be shown that, when at least one helicity is nonzero,
one has four linearly independent solutions [51]:

AI ¼ ½12�d12;3 ½23�d23;1 ½31�d31;2I rjiP
h−1

;

AII ¼ ½12�d12;3 ½23�d23;1 ½31�d31;2I rjoP
h−1

;

AIII ¼ h12i−d12;3h23i−d23;1h31i−d31;2I rji
−
P

h−1
;

and AIV ¼ h12i−d12;3h23i−d23;1h31i−d31;2I rjo
−
P

h−1
; ð18Þ

where I are given by Eq. (12). When all helicities are
vanishing, fI coincides with fIII and fII coincides with fIV.
Classification (18) is different from Eq. (4) only in two

respects. The first is that the soð3; 2Þ covariance turns out to
be consistent with splitting the global AdS into two
patches, with each being associated with its own amplitude.
This explains why we get four solutions in Eq. (18) instead
of two solutions in flat space. The second difference is that
the flat space momentum-conserving delta functions in
AdS are replaced with one of the I Eq. (12), depending on
the patch one is interested in. Based on the flat limit, where
AI and AII (AIII and AIV) for

P
i hi < 0 (

P
i hi > 0) are

singular for real momenta, we argue that they should also
be dropped in AdS as physically irrelevant. It is worth
mentioning that these amplitudes are divergent; see dis-
cussion below Eq. (12). The same refers to all amplitudes
with

P
ihi¼0. Finally, we remark thatAI (AII) for

P
h¼1

(
P

h ¼ −1) in flat space Eq. (4) are conformally invariant
[52]. This explains why these are equal to the associated
amplitudes in global AdS Eq. (18).
Amplitudes with three singular plane waves using the

inversion reduce to amplitudes in which all plane waves are
regular. Amplitudes in which regular and singular plane
waves are mixed require a separate analysis. If these are
genuine functions, they should be given by linear combina-
tions of Eq. (18). Another potential possibility is that they are
given by distributions. In this respect, it is worth noting that,
by considering an ansatz for a distribution supported on
p ¼ 0 and requiring Eq. (17), we again end upwith Eq. (18),
where the I appear in representation (13).
Conclusions.—In the present Letter, we suggested a

natural generalization of the spinor-helicity formalism to
AdS4. We started by generalizing the familiar flat space
plane wave solutions to AdS and then used them to evaluate
some simple three-point amplitudes. We also classified all
consistent spinning three-point amplitudes by requiring
correct transformation properties. We found that, as in flat
space, for three generic spins, by picking different signs of
helicities, one can construct four different parity-invariant
amplitudes. At the same time, approaches that involve
Lorentz tensors result only in two consistent parity-
invariant structures, both on the bulk [53–58] and boundary
[59,60] sides. This phenomenon directly generalizes an
analogous one in flat space and is consistent with a recent
analysis in the light-cone gauge [34].
The amplitudes that we computed were defined as the

classical action evaluated on the particular basis of sol-
utions to the linearized equations of motion. This definition
is related to the holographic one—in which amplitudes are
identified with boundary correlators and computed in the
bulk by Witten diagrams [61–63]—by a mere change of a
basis for the states appearing on external lines. Unlike bulk-
to-boundary propagators, the plane wave solutions that we
employed do not have a boundary limit that would allow us
to associate them with localized boundary sources. Instead,
they have a transparent flat limit, which also makes the flat
limit of the spinor-helicity amplitudes more intuitive. In this
respect, our plane waves serve as the properly focused
scattering states necessary to access flat space physics from
holography; see, e.g., [64–66]. An explicit transformation
relating the two bases will be given elsewhere.
An obvious future direction is to extend these results to

higher-point amplitudes and see how various bulk scattering
processes manifest themselves in an amplitude’s analytic
structure; see, e.g., [67–69] for related work. Optimistically,
clear understanding of the analytic structure of AdS spinor-
helicity amplitudes may lead to the development of the on-
shell methods, which are as efficient, as in flat space.
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Finally, our construction may be useful in shedding light
on how higher-spin no-go theorems (see [70] for review)
can be circumvented in flat space. Thus far, it is known
how to construct higher-spin theories in flat space only in
the chiral sector [30–32], whereas their parity-invariant
completions are obstructed by nonlocalities. At the same
time, higher-spin theories in AdS have solid support from
holography [71,72]. We believe that the connection
between higher-spin theories in flat and in AdS spaces
does exist, and both sides will benefit from its clarification.
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