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Intermediate filaments are the least explored among the large cytoskeletal elements. We show here that
they display conformational anomalies in narrow microfluidic channels. Their unusual behavior can be
understood as the consequence of a previously undetected, large-scale helically curved superstructure.
Confinement in a channel orders the otherwise soft, strongly fluctuating helical filaments and enhances
their structural correlations, giving rise to experimentally detectable, strongly oscillating tangent
correlation functions. We propose an explanation for the detected intrinsic curving phenomenon—an
elastic shape instability that we call autocoiling. The mechanism involves self-induced filament buckling
via a surface stress located at the outside of the cross section. The results agree with ultrastructural findings
and rationalize for the commonly observed looped intermediate filament shapes. Beyond curvature,
explaining the molecular origin of the detected helical torsion remains an interesting challenge.
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The integrity and dynamics of biological cells delicately
depend on the mechanical response of their cytoskeleton
consisting of actin filaments, microtubules, and intermedi-
ate filaments (IFs) [1,2]. While they have been experi-
mentally probed in many different ways, a full
understanding of their properties still remains a challenge.
This is particularly true for the IFs—the least studied.
Experiments probing their elastic response have shown that
they are the most flexible and extensible of the filaments
of the cytoskeleton [3–6]. Biofilaments are usually mod-
eled as semiflexible polymers characterized by their per-
sistence length. For vimentin, a prominent member of the
IF family, this model was used in combination with various
experimental methods to determine values for the persist-
ence length of a few microns [3,7,8].
In most of the experiments, the IFs interact strongly with

a substrate (in atomic force and electron microscopy), and
the extracted physical properties depend on the substrate
properties the filaments adhere to. A closer look at the
experimental micrographs [3,7,8] reveals shapes that
resemble sinusoidal waves, loops, or circular arcs remi-
niscent of helices confined to a 2D substrate [9,10]. This
leads to the suspicion that IFs are not simple enough to be
described by a semiflexible chain. To eliminate possible
artifacts from adsorption, we have studied individual IFs
in quasi-two-dimensional microfluidic channels where the
filaments, despite geometric confinement, are free to
rearrange. Averaging over a number of different filaments,
a persistence length close to 2 μm was found previously
[11]. However, a deeper inspection of the individual

filament data, that we will present in this Letter, reveals
an anomalous behavior which is incongruent with the
expected behavior of a semiflexible polymer. For instance,
we observe the transient formation of rings and oscillatory
shapes (see Fig. 1 and Supplemental videos [12]). However,
the most prominent manifestation of this anomaly is found in
a strongly oscillating tangent correlation function for indi-
vidual filaments, in sharp contrast to the behavior character-
istic for a semiflexible chain under lateral confinement [13].
In this Letter, we will show that the data can be completely
rationalized by assuming that IFs behave like squeezed
helical filaments under lateral confinement.
A central observable in our study is the tangent corre-

lation function GðsÞ that provides crucial conformational
information about the filament’s microstructure. More
specifically, it is defined as

GðsÞ ¼ hcosϕðsÞi; ð1Þ

where ϕðsÞ is the tangent angle of the filament at the
arclength position s; see the sketch in Fig. 1(b). h� � �i in
Eq. (1) denotes thermal average and ð� � �Þ the spatial average
along the contour length (L), i.e., f½ϕðsÞ� ¼ ½1=ðL − sÞ�R
L−s
0 duf½ϕðuþ sÞ − ϕðuÞ�; see also Fig. 1(b).
Revisited (unpublished) experimental data on vimentin

filaments whose setup is described in detail elsewhere [11]
are displayed in Fig. 2. Quasi-two-dimensional micro-
fluidic channels of height h and varying lateral confinement
d were employed to confine these filaments. Upon limiting
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the thermal average of cosϕðsÞ to an individual filament,
striking oscillations in GðsÞ set in; see Fig. 2. At a
prescribed height (h ¼ 0.45 μm), the two profiles in the
main body in Fig. 2 (red and yellow symbols) correspond
to two different lateral confinements (d ¼ 1.6 μm and
d ¼ 2.7 μm). GðsÞ increases with decreasing d (i.e., with
an increasing degree of lateral confinement) as expected,
whereas the oscillation amplitudes as well as their asso-
ciated wavelength decrease. These features remain robust
upon changing the channel height to 1 μm; see the green
circles in the inset in Fig. 2.
In the following, we rationalize these observations by

means of Monte Carlo (MC) simulations as well as the
analytical theory. The underlying idea is that confined IFs
can be modeled as a helical superstructure trapped on a flat
surface and subject to an additional lateral confinement.
Consider a helical Euler-Kirchhoff filament of length L,

characterized by Euler angles ψ , ϕ, and θ [14]. Flattening
the filament onto a plane constrains the third angle to
θ ¼ π=2, and its elastic energy is given by [9,10]

E ¼ 1

2

Z
L

0

½Bðϕ0 − ω1 sinψÞ2 þ Cðψ 0 − ω3Þ2

þ Bω2
1cos

2ψ �ds; ð2Þ

where ϕ0ðsÞ≕ κðsÞ stands for the curvature, ψ designates
the twist angle, and ψ 0ðsÞ is the twist with s being the
arclength; see also Fig. 1(b). The constants B and C in
Eq. (2) are the bending and torsional stiffness, respectively,
and ω1 and ω3 are the preferred curvature and twist,
respectively, of the unconfined three-dimensional helical
filament [15].
The filament ground state stemming from Eq. (2) obeys

two coupled equations: the pendulumlike equation
(i) ψ 00 þ ½ðBω2

1Þ=ð2CÞ� sinð2ψÞ ¼ 0 and (ii) κ ¼ ω1 sinψ
indicating that curvature is slaved by the twist angle in
contrast to the unconfined three-dimensional case (where
both decouple). In general, depending on the material
parameters, a rich variety of equilibrium shapes resembling
loops, waves, spirals, or circles exist [10]. These shapes
can be seen as the result of interacting repulsive conforma-
tional defects corresponding to curvature inversion points.
In terms of twist, such defects originate from a rapid
variation of ψðsÞ (reminiscent of a kink) and are called
twist kinks (TKs). A relevant dimensionless parameter is
γ ¼ ð4ω2

1B=π
2ω2

3CÞ, which measures the ratio of bending
and twisting energy. For γ > 1, the ground state appro-
aches a TK-free circular arc of radius 1=ω1; see Fig. 1(a).

FIG. 2. Tangent correlation functions GðsÞ of vimentin fila-
ments (experimental data represented by symbols) confined in a
quasi-two-dimensional microfluidic channel of width d and
height h given in microns (as well as L); see the bottom right
inset. Bottom left inset: (i) Data for h ¼ 1 μm (green circles).
(ii) Sample exhibiting strong and persisting oscillations in GðsÞ
(blue circles). Solid (dashed) lines stem from MC simulation data
of filaments in two dimensions (i.e., h ¼ 0) with (without) twist.

(a)

(b)

FIG. 1. (a) Left panel: Vimentin filament confined in a slit
occasionally coiled up in a transient ring; see Supplemental
Material [12], Video 3. Right panel: Model three-dimensional
helical filament getting confined to a plane forming a ring as an
energy minimum; see Eq. (2) and the text. (b) Upper panel: Typical
oscillatory shape of an intermediate filament in a quasi-two-
dimensional microfluidic channel characterized by a lateral con-
finement d [11]; see Supplemental Videos 1 and 2 [12]. Lower
panel: Geometrical setup of the model filament. The tangent vector
t evolves with arclength s along the filament. Its direction is given
by the angle ϕðsÞ, measured from the horizontal. ψðsÞ denotes the
twist angle represented by a black ribbon on the filament’s surface.
The variation of the twist at curvature inversion points gives rise to
conformational defects called twist kinks (TKs).
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For γ < 1, the filament can be populated by TKs whose
density is limited by their repulsion [16].
Extensive MC simulations based on the Hamiltonian in

Eq. (2) have been carried out to explore the conformations
of confined filaments in full detail; see Supplemental
Material, Sec. S2 [12]. Our best matching MC data for
GðsÞ can be found in Fig. 2. Interestingly, taking into
account the twist via Eq. (2) corroborates the experimen-
tally observed oscillations by employing consistent
material parameters [17]; see Fig. 2. These results suggest
that the unconfined vimentin possesses a helical super-
structure characterized by a radius ∼0.4 μm and pitch
∼4 μm and a bending persistence length B=ðkBTÞ ∼
50 μm [18]. In contrast, for straight semiflexible chains,
no oscillations emerge in GðsÞ where the usual Odijk
behavior [13] is recovered; see the dashed lines in Fig. 2.
To deepen our understanding of the role of the internal

twist, that is a hidden degree of freedom in the experi-
ments, we analyze the simulated filament conformation
for various degrees of lateral confinement. A useful
quantity is the probability density of TK occurrence,
pðnÞ, where n is the number of TKs which is adequately
defined as n ¼ ð1=πÞ R L

0 ψ 0ðsÞds. Probability density
profiles pðnÞ for varying lateral confinement d are
depicted in Fig. 3(a). On average, the number of TKs
increases with decreasing d; see Fig. 3(a). Computing the
corresponding GðsÞ (not shown) clearly indicates that the
average number of TKs n also describes the number of
extrema encountered in GðsÞ. Thermal fluctuations
induce injections and ejections of TKs at the ends of
the filament, which qualitatively explains the fading of
the oscillations in GðsÞ shown in Fig. 2. Dynamic TK
number switching is also observed experimentally; see
Supplemental Fig. 1 [12].

To shed more light on the underlying physical mecha-
nisms of confinement-mediated TK production, let us
consider a more tractable analytical model. It consists in
replacing the confinement by a pulling force at zero
temperature; see Fig. 4. In the presence of the external
force F and for small deformations (φ ≪ 1Þ, the elastic
energy becomes

EF ≃ Eþ F
2

Z
L

0

ϕ2ðsÞds: ð3Þ

Consider the regime γ ≫ 1 which has as a ground state (in
the absence of a force) a circular arc ϕðsÞ ¼ −ω1s and
energy E0 ¼ CLω2

3=2; see Fig. 4. The formation of a TK is
energetically favorable when the pulling force exceeds a
critical value Fc ¼ ð64=L3ω1Þ

ffiffiffiffiffiffiffi
BC

p
. The latter is the result

of a comparison of the elastic energy of a TK-free filament
(E0 þ ðω2

1L
3=24ÞF) with that of a filament containing a

single TK located at the midpoint (E0 þ ω1

ffiffiffiffiffiffiffi
BC

p þ
ðω2

1L
3=96ÞF); see Fig. 4. In the opposite, small force

regime (F < Fc), the filament deforms like a stretched
elastic arc; see Fig. 4.
Above Fc, one or more TKs are formed; see Fig. 4. The

required force to nucleate n TKs is given by FcðnÞ ¼
½ð48 ffiffiffiffiffiffiffi

BC
p Þ=ðL3ω1Þ�f½n2ðnþ 1Þ2�=ð2nþ 1Þg. Note that the

kinks mutually repel each other, giving rise to an ordered
one-dimensional crystal-like structure of n TKs separated
by circular arcs of switching curvature; see Fig. 4.

(a) (b)

FIG. 3. (a) Simulation data for the probability density of the
number of TKs n for different values of the lateral confinement d
with ω1 ¼ π, γ ¼ 5, B ¼ 10, and C ¼ 0.16 (with kBT ¼ L ¼ 1).
(b) Low-temperature snapshots of a filament close to its ground
state for the same values of d as in the histogram illustrating the
TK injection.

FIG. 4. Evolution of a ground state of an elastic filament with
curvature under an external pulling force. Inset (left): Corre-
sponding tangent correlation functions for n ¼ 3 (blue) and
n ¼ 4 (red) TKs. Inset (right): The number of twist kinks as a
function of the tension.
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Expanding the chain conformation in Fourier modes and
keeping only the dominant one, we extract the tangent
correlation function:

GðsÞ ≈ 1 −
16l2ω2

1

π4
sin2

�
πs
2l

��
1þ l sin ðπs=lÞ

πðL − sÞ
�

ð4Þ

with l ¼ L=ðnþ 1Þ representing the distance between two
adjacent TKs. Typical profiles of GðsÞ, displaying oscil-
lations similar to the confinement case, are shown in Fig. 4.
Simulation results with external force, not shown here,
corroborate these findings.
Thus, our results strongly suggest that vimentin fila-

ments have a helical superstructure of a yet unclear origin.
Oscillations in the tangent correlation functions of indi-
vidual actin filaments were also previously observed
[19,20] and helical superstructures of microtubule reported
[21,22]. Therefore, the natural question of a more general
physical mechanism arises. Here we propose a model based
on self-buckling, for which we suggest the name autocoil-
ing; see Fig. 5. It is generic for filaments exposed to surface
stresses that induce a broken symmetry via curved states
and can be witnessed in the mundane example of drying
spaghetti; see Fig. 5(c). The outer layer of the spaghetti
dries and shrinks faster and induces a buckling stress on the
(transiently) more swollen core.
For vimentin, there are several hints towards a surface

stress from its molecular structure. During the assembly of
vimentin monomers, they form highly elongated coiled-
coil dimers and then tetramers and at an intermediate stage
give rise to an approximately “spindle-shaped” 32-mer (see
images in Ref. [23])—the so-called unit length filament
(ULF) [24]. These ULFs then assemble into long filaments.
The initially rugged, “rough” filaments of spindle-like ULF
subunits longitudinally anneal, and the filaments undergo a
maturation phase during which the surface smoothens
[23,24]. We suggest that the spindle shape and the finite
lateral thickness of the ULF can be understood as origi-
nating from double-twist frustration caused by chiral
(cholesteric) interactions of the coiled-coil alpha helices
aligned along the axis. As proposed in Ref. [25], a bundle

of chiral objects displays a finite size, as the chains on the
outside are progressively more tilted than those on the
inside. This tilt causes a surface stress and axial shortening
of the outer chains with respect to the inner ones.
As the simplest possible model for self-buckling under a

surface stress, we consider an isotropic incompressible
elastic rod of radius R and length L. Its energy is
U ¼ 1

2

R
dVσijεij þ λΔS, where σij and εij are the bulk

stress and strain tensor, respectively. The constant λ > 0 is
an isotropic tensile surface stress (surface energy density).
ΔS denotes the variation of the surface after deformation.
When negative, the term λΔS can compete with the positive
elastic bulk energy. Under a pure bending deformation with
a constant curvature κ of the rod, the cross section is
slightly deformed [see Fig. 5(a)], and ΔS < 0 as deduced
from the deformation field of a bent rod [26]. It can be
shown that ðΔS=S0Þ ≈ − 3

16
R2κ2, where S0 ¼ 2πLR is the

surface of the undeformed rod. The total surfaceþ elastic
energy can then be written as U ¼ 1

2
BeðλÞLκ2 with an

effective bending modulus that has contributions from both
the bulk and the surface stress of the rod: BeðλÞ ¼
ðπ=4ÞYR4 − λð3π=4ÞR3, where Y is the Young modulus.
For sufficiently large λ, the stiffness BeðλÞ vanishes and the
rod becomes unstable. This is the signature of a sponta-
neous broken symmetry of the rod, i.e., self-buckling [27].
Beyond the curvature, the precise molecular origin of the

helical torsion of vimentin remains currently unexplained
and calls for further investigation. At this point, we might
speculate that the handedness and pitch are inherited from
the chiral inter-alpha-helix interaction on the monomer
level and bear some similarity to bacterial flagella [28] and
microtubule superhelical states [21,22].
In summary, we report evidence for a helical super-

structure in intermediate filaments. Lateral confinement in
a quasi-2D channel orders the otherwise soft and strongly
fluctuating TK defects and leads to experimentally detect-
able, oscillating tangent correlation functions. The under-
lying physical mechanism is the injection of low-energy
defects, that can be seen as a new deformation mode for
confined helical filaments. This behavior is reminiscent of
the plastic deformations mediated by dislocations in solids
[29]. The self-buckling mechanism suggested to be at the
origin of the curved states of vimentin could also be common
in other biological filaments beyond IFs. More generally,
tensile surface stress could be induced by any mismatch
between the surface and the bulk of the filament, like, e.g.,
the surface tension between the ordered water and ions at the
outer layers of the filament that display mismatched osmotic
and Maxwell stresses between the interior and exterior.
The biological meaning of an intrinsically stiffer but coiled

helical structure is apparent. A coiled structure resists small
forces by uncoiling and displays high compliance without
damage up to the point of stronger elongation. This reinforces
the IFs’ natural role as supporting mechanical elements and
protective stress absorbers of the cell.

FIG. 5. (a) Stages of assembly of IFs and their autocoiling
instability. (b) The cross-section deformation of the bent circular
rod. (c) The autocoiling of drying spaghetti.
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