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An atomistic effective Hamiltonian scheme is employed within molecular dynamics simulations to
investigate how the electrical polarization and magnetization of the multiferroic BiFeO3 respond to time-
dependent ac magnetic fields of various frequencies, as well as to reveal the frequency dependency of the
dynamical (quadratic) magnetoelectric coefficient. We found the occurrence of vibrations having phonon
frequencies in both the time dependency of the electrical polarization and magnetization (for any applied ac
frequency), therefore making such vibrations of electromagnonic nature, when the homogeneous strain of
the system is frozen (case 1). Moreover, the quadratic magnetoelectric coupling constant is monotonic and
almost dispersionless in the sub-THz range in this case 1. In contrast, when the homogeneous strain can
fully relax (case 2), two additional low-frequency and strain-mediated oscillations emerge in the time-
dependent behavior of the polarization and magnetization, which result in resonances in the quadratic
magnetoelectric coefficient. Such additional oscillations consist of a mixing between acoustic phonons,
optical phonons, and magnons, and reflect the existence of a new quasiparticle that can be coined an
“electroacoustic magnon.” This latter finding can prompt experimentalists to shape their samples to take
advantage of, and tune, the magnetostrictive-induced mechanical resonance frequency, in order to achieve
large dynamical magnetoelectric couplings.
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Multiferroicmaterials can exhibit amagnetoelectric (ME)
coupling between their electrical and magnetic moments.
Such a coupling is promising for designing novel devices by
controllingmagnetization with electric fields, or conversely,
electrical polarization with magnetic fields [1–6]. Two paths
can be taken to realize this magnetoelectric coupling: direct
coupling of polarization with a magnetic field versus
mediated by strain. The latter is particularly investigated
by mixing efficient magnetostrictive and piezoelectric
materials, in composites [7] or heterostructures [8,9].
These two types of coupling have been mostly for static

properties [1–4,10,11]. In other words, how strain affects
dynamical properties ofmultiferroics ismostly an uncharted
territory. In particular, it is yet unclear whether ME coef-
ficients can be improved with mechanical resonances in
single phase materials, as in laminar composites [8,12]. It is
also legitimate to investigate the effect of strain on electro-
magnons (mixing of phonons and magnons [13–16]), or
even on the formation of a novel type of (dynamical) object.
To resolve such issues, we (1) conducted molecular

dynamics (MD) simulations within an effective Hami-
ltonian scheme on BiFeO3 (BFO), a prototypical multi-
ferroic, subject to ac magnetic fields; and (2) monitored
the resulting timedependency of its electrical polarization and

magnetization. It is found, that (i) electromagnons (of phonon
frequencies) exist independently of allowing the homo-
geneous strain to relax; and (ii) relaxation of the homo-
geneous strain results in the emergence of a new type of
quasiparticle consisting of acoustic vibrations coupled to
phonons and magnons, and generating resonances in the
quadratic ME coefficient.
Here, we use the effective Hamiltonian (Heff ) scheme of

BiFeO3 described in Ref. [17]. Its total energy EBFOðfuig;
fηHg; fηIg; fωig; fmigÞ includes four types of degrees of
freedom: (1) the local modes fuig, proportional to the local
electric dipoles [18,19]; (2) the homogeneous fηHg and
inhomogeneous fηIg strain tensors [18,19]; (3) the pseu-
dovectors fωig that characterize the oxygen octahedral
tiltings [20] (also called antiferrodistortive (AFD) motions);
and (4) the magnetic moments fmig of the Fe ions (in all
cases, the subscript i labels unit cells in our simulated
supercells). The total energy of Heff for BFO is a sum of
three main energies Etot ¼ EFEðfuig; fηlgÞ þ EAFDðfuig;
fηlg; fωigÞ þ EMAGðfmig; fuig; fηlg; fωigÞ, where fηlg
is the total strain tensor (i.e., that incorporates both the
homogenous and inhomogeneous components). EFE is the
energy involving the local modes and elastic deformations,
while EAFD is the energy that gathers the AFD motions and
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their couplings with local modes and strains. Moreover,
EMAG contains the magnetic degrees of freedom and their
couplings with local modes, AFD tiltings, and strains, and
reads [21]

EMAG ¼
X

ijαγ

Qijαγmiαmjγ þ
X

ijαγ

Sijαγmiαmjγ

þ
X

ij;αγνδ

Eij;αγνδmiαmjγuiνuiδ

þ
X

ij;αγνδ

Fij;αγνδmiαmjγωiνωiδ

þ
X

ijl;αγ

Gijl;αγηlðiÞmiαmjγ

þ
X

ij

Lijðωi − ωjÞ · ðmi ×mjÞ; ð1Þ

where α, γ, ν, δ denote the Cartesian components, and the
indices i and j run over sites. The six terms of Eq. (1) are,
respectively, the dipolar interactions between the magnetic
moments, the short-range magnetic exchange coupling, the
coupling between the magnetic moments with local modes,
AFD motions and strain, and a particular Dzyaloshinskii-
Moriya (DM) interaction involving the oxygen octahedral
tiltings. Under a magnetic field, an additional term
−
P

imi ·H is also incorporated into the total energy.
This effective Hamiltonian is then adopted for MD sim-
ulations, by solving the equations of motion for local
modes, oxygen octahedral tilting, strains, and magnetic
moments, as detailed in Refs. [22–24]. We adopt a
12 × 12 × 12 supercell in terms of the 5-atom perovskite
unit cell, with periodic boundary conditions. MD simu-
lations are carried out at 1 K under theNPT ensemble when
the homogeneous strain can relax during the simulations
versus the NVT ensemble when the total strain is frozen
during the computations. More details about the MD
computations and the effective Hamiltonian schemes for
BFO are given in the Supplemental Material [21,25–37].
We apply to our considered state of BFO a magnetic field

with two components, both aligned along the ½112̄� direc-
tion: a dc field of magnitude Hdc ¼ 245 T and an ac field
given by hac sinðωtÞ where hac ¼ 61.2 T and ν ¼ ω=2π is
the frequency of the applied ac magnetic field. These fields
are chosen to have high magnitude to numerically observe
the response of polarization since ME coefficients are
known to be rather small in BiFeO3 [21,32,38,39].
Let us first restrict ourselves to the case when the

homogeneous strain is not allowed to relax (therefore
adopting the homogeneous strain of the R3c state under
a sole dc magnetic field of 245 T) during the MD
simulations—while the inhomogeneous strain can still
vary. Figure 1(a) depicts the temporal behavior of the
component of the polarization along the [111] direction in
the R3c phase for a frequency (ν) of 160 GHz. Moreover,
Fig. 1(b) displays the corresponding Fourier transform, and

demonstrates that four main frequencies govern the tem-
poral evolution of the electrical polarization: the applied ac
frequency and its double (i.e., 160 and 320 GHz), which
reveals the occurrence of dynamical magnetoelectric
effects, and two higher frequencies that are of the order
of 4300 and 7000 GHz, which are natural phonon frequen-
cies (see Refs. [22,26,40–47]).
Interestingly and as evidenced in Fig. 1(d), these four

frequencies also appear in the Fourier transform of the
curve representing the component of the magnetization
along the ½112̄� direction as a function of time [shown in
Fig. 1(c)]. The frequency of 160 GHz seen in Fig. 1(d)
emerges from the energy coupling the magnetic moment
with the ac magnetic field, while the frequency at 320 GHz
is characteristic of nonlinear magnetic couplings.
Remarkably, the high frequencies around 4300 GHz seen
in Fig. 1(d), and at lesser extent at 7000 GHz, reveal that
natural phonons mix with magnons and affect the temporal
evolution of the magnetization under a time-dependent
magnetic field. Natural phonons thus become electromag-
nons [14–16], consistent with Ref. [48] for the R3c phase
of BiFeO3—these electromagnons are presently numeri-
cally found to originate from the fact that polarization and
oxygen octahedral tiltings affect the magnetic exchange
parameters [third and fourth terms of Eq. (1)]. Note that
magnons having frequencies smaller than 160 GHz are not
seen in Fig. 1(d) because the applied magnetic fields are too
large and thus force the magnetic moments to mostly follow

(a)

(c)

(b)

(d)

FIG. 1. Temporal evolution of the polarization [panel (a)] and
magnetization [panel (c)] in BiFeO3 under a dc magnetic field of
245 Tof magnitude coexisting with an ac magnetic field of 61.2 T
of magnitude and of 160 GHz of frequency, along with their
resulting Fourier transforms [panels (b) and (d), respectively] as a
function of frequency, in the case that the homogeneous strain is
frozen in the MD simulations. The dc and ac magnetic fields
are applied along the ½112̄� direction. The displayed polarization
is along the [111] direction while the magnetization is along the
½112̄� direction. The solid line in panel (a) represents the fit of the
MD data by a function of the form Aþ B sinωt where
ω=2π ¼ 160 GHz.
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them, in addition to possessing smaller oscillations arising
from the coupling of the magnetic moments with the
aforementioned phonons [see Fig. 1(c)].
Let us now allow the homogeneous and inhomogeneous

strains to fully relax during the MD simulations, and
determine how it affects the temporal evolutions of the
polarization and magnetization [see Figs. 2(a) and 2(c),
respectively], as well as their Fourier transforms [cf.
Figs. 2(b) and 2(d), respectively]. Figures 2(e) and 2(f)
further report the variation of the diagonal elements of the
homogenous strain tensor (ηH;1, ηH;2, and ηH;3) as a func-
tion of time and of their Fourier transforms, respectively,
while Figs. 2(g) and 2(h) provide similar information but
for the shear elements of the homogeneous strain tensor
(ηH;4, ηH;5, and ηH;6).

Remarkably, allowing the homogeneous strain to relax
generates two additional frequencies in the Fourier trans-
form of the polarization-versus-time curve with respect to
the case of fixed homogeneous strains. These two frequen-
cies are about 90 and 267 GHz, respectively, and can also
be seen in the Fourier transform of the magnetization-
versus-time functions. Figure 2(h) reveals that the fre-
quency of 90 GHz originates from the oscillations of the
shear elements of ηH;4, ηH;5, and ηH;6, while that of
267 GHz can be traced back to the vibrations of the
diagonal (ηH;1, ηH;2, and ηH;3) elements of the homo-
geneous strain according to Fig. 2(f). Figures 2(f) and 2(h)
further indicate that the diagonal and shear elements of the
homogeneous strain tensor adopt the frequency of the
applied magnetic fields of 160 GHz too, and that ηH;1, ηH;2,
and ηH;3 also possess another frequency of the order of
67 GHz that slightly appears in the Fourier transform of the
magnetization as shown in Fig. 2(d) (note that, on the
other hand, we did not find any frequency higher than
320 GHz in the Fourier transforms of all homogeneous
strain components, including the phonon frequencies).
Comparing the results between the cases of the fixed
versus relaxed homogeneous strain therefore demonstrates
that, in our simulations, the homogeneous strain tensor has
its own natural frequencies of the order of 90 and 267 GHz
that then couple with oscillations of both the polarization
and magnetization [Note that these two frequencies are
indeed natural frequencies of the homogeneous strain
because they are also numerically found (not shown here)
in the Fourier transform of the homogeneous strain when
only a dc magnetic field is applied or even when no
magnetic field is imposed on BFO, with the homogeneous
strain having the possibility to relax during all these
additional simulations]. In other words, one can create a
new type of quasiparticle mixing acoustic phonons, optical
phonons, and magnons, when applying ac magnetic fields
with specific frequencies (i.e., 90 and 267 GHz here). Such
creation of this quasiparticle can be understood as follows:
the magnetic field at these frequencies naturally activates
magnons, via the direct interaction between magnetic field
and magnetic moments, which in turn dynamically couple
with the strain and its natural frequencies via the magne-
tostrictive effect. This dynamical strain then activates
optical phonons at these frequencies, because of couplings
between strain and electrical dipoles (via electrostrictive
and piezoelectric effects), therefore resulting in the for-
mation of this quasiparticle. We propose to name such a
quasiparticle “electroacoustic magnon” to emphasize that,
unlike “traditional” electromagnons, strain also plays a role
in their creation. Note that pump-probe experiments
revealed acoustic excitations having similar frequencies
as our predicted electroacoustic magnons, namely,
around 30 and 50 GHz for transverse and longitudinal
acoustic modes in BFO, respectively [49,50] (note also
that the presently calculated natural frequencies of the

(a)

(c)

(e)

(g)

(b)
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(h)

FIG. 2. Temporal evolution of the polarization [panel (a)],
magnetization [panel (c)], diagonal elements of the homogeneous
strain tensor [panel (e)], and shear elements of the homogeneous
strain tensor [panel (g)] in BiFeO3 under a dc magnetic field
of 245 T of magnitude coexisting with an ac magnetic field of
61.2 T of magnitude and of 160 GHz of frequency, along with
their resulting Fourier transforms [panels (b), (d), (f), and (h),
respectively] as a function of frequency, when the homogeneous
strain is allowed to relax during the MD simulations. The dc and
ac magnetic fields are applied along the ½112̄� direction. The
displayed polarization is along the [111] direction while the
magnetization is along the ½112̄� direction.
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electroacoustic magnons naturally depend on the choice of
the homogeneous strain mass adopted in our MD simu-
lations). Moreover, a peak at about 300 GHz has been
observed in the Raman spectrum of the spin-canted
magnetic structure of epitaxial BFO films [36]. Further-
more, a phenomenon analogous to our proposed electro-
acoustic magnons has just been reported in Ref. [51], that is
a dynamical coupling between nuclear spins and electro-
mechanical phonons. Such a phenomenon consists of
applying an ac electric field at the natural frequency of a
resonator, which leads to an electrically tunable phonon
that imparts diagonal and shear strains oscillating with time
and which then dynamically couple with spins of nuclei
(via a quadruple interaction between strains and spins
there). This resulting dynamical coupling between spins
and electromechanical phonons was indicated to open up
quantum state engineering, such as coherent coupling
between sound and nuclei and mechanical cooling of
solid-state nuclei [51]. Such interesting possibilities there-
fore hint that our presently discovered electroacoustic
magnons may lead to novel and important devices.
Let us now reveal how these electroacoustic magnons

affect the dynamical magnetoelectric coefficients. For that,
let us first recall the following equation of any component i
of the polarization under magnetic fields [52,53]:
Pi ¼ Ps

i þ αijHj þ 1
2
βijkHjHk, in which Ps

i is the i com-
ponent of the spontaneous polarization, while Hj and Hk

are components of the magnetic field. Moreover, αij and
βijk are linear and quadratic magnetoelectric coefficients,
respectively. Assuming that the linear ME coefficient is
negligible compared to the quadratic coefficient (as sug-
gested in Refs. [21,54] for large fields) leads to the
following equation for the polarization (along the [111]
direction) when applying a magnetic field (along the ½112̄�
direction) H ¼ Hdc þ hacei½ωt−ðπ=2Þ�:

PðtÞ¼P0þβð0;ωÞHdchacei½ωt−ðπ=2Þ� þβðω;ωÞ1
2
h2aceið2ωt−πÞ:

ð2Þ

The second and third terms on the right-hand side of Eq. (2)
characterize the magnetic-field induction of a polarization
component with the same frequency of applied ac magnetic
field and a second harmonic generation, respectively—
which explains the occurrence of a strong Fourier transform
at 160 GHz and a weaker one at 320 GHz in Figs. 1(b) and
1(d). Note that Fig. 1(a) also shows the fit of PðtÞ by a
function of the form Aþ B sinωt by means of a solid line.
Such a fit nicely goes throughout the numerical MD data,
therefore implying that (i) the linear ME coefficient and
βðω;ωÞ can be neglected in front of βð0;ωÞ for the ac
frequency of 160 GHz (the deviation of the MD data with
respect to the fit consists of rapid oscillations associated
with the phonon frequencies of about 4300 and 7000 GHz);
and (ii) the validity of Eq. (2) is confirmed by our MD data.

Taking now into account that βð0;ωÞ is a complex
number (especially close to resonant frequencies) we
rewrite βð0;ωÞ ¼ β0ð0;ωÞ þ iβ00ð0;ωÞ, whose separate
contributions can be computed thanks to Eq. (2) via

β0ð0;ωÞ ¼
2
L

R
L
0 ðPðtÞ − P0Þ sinωtdt

Hdchac

β00ð0;ωÞ ¼
2
L

R
L
0 ðPðtÞ − P0Þ cosωtdt

Hdchac
; ð3Þ

where L is the overall simulation time.
We now apply, in addition to the dc magnetic field of

245 T, ac magnetic fields of the same magnitude of 61.2 T
as in Figs. 1 and 2 but of different frequencies ranging
between 20 GHz and 500 GHz (both fields were applied
along ½112̄�). Using Eqs. (3), βð0;ωÞ is determined in the
frozen [Fig. 3(a)] and relaxed [Fig. 3(b)] homogeneous
strain cases. When the homogeneous strain is fixed in the
simulations, the imaginary part of βð0;ωÞ is basically null
for any ac frequency while the real part β0ð0;ωÞ is nearly
independent of the frequency taking a value of about
2.0 × 10−8 C=m2T2 ¼ 0.32 × 10−19 s=A in magnitude—
that agrees very well with the β311 coefficient of 0.3 ×
10−19 s=A measured in Ref. [39]. On the other hand, when
the homogeneous strain fully relaxes, βð0;ωÞ exhibits two
resonances at precisely the two frequencies of the electro-
acoustic magnons, as evidenced by strong peaks of the
β00ð0;ωÞ imaginary part at 90 and 267 GHz that are
accompanied by strong negative values immediately fol-
lowed by strong positive values of the βð0;ωÞ0 real part in
the near vicinity of these two frequencies. Relaxing the
homogeneous strain has thus dramatic consequences on the
dynamical quadratic ME coefficients near some resonant
frequencies because such strain dynamically couples with
both the polarization and magnetization. The divergences
of βð0;ωÞ at these two resonances that are induced by
indirect (i.e., strain mediated) ME coupling therefore differ
in nature from the divergences of the linear dynamical
ME coefficient predicted to occur at magnons or phonon

(a) (b)

FIG. 3. Dependency of the real and imaginary parts of the
βð0;ωÞ dynamical quadratic ME coefficient on the frequency of
the ac applied magnetic field when the homogeneous strain is
frozen [panel (a)] versus when the homogeneous strain can relax
in the MD simulations [panel (b)].
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frequencies in Ref. [55] since the latter originate from a
direct coupling between polarization and magnetism. Note
that electromechanically mediated resonance in magneto-
electric coefficients was already observed in laminar piezo-
electric-magnetoelectric composite structures [8,12]. Here,
it is of interest in the design of magnetoelectric based
sensors, for which the resonance frequency can be tuned by
properly designing the shape and size of a single phase
material (such as BiFeO3).
Note also that we are unable to extract βð0;ωÞ for high

frequencies, because the time dependency of the polariza-
tion becomes noisy due to interference between the phonon
frequencies and the applied magnetic field frequency. This
explains why we limited ourselves to frequencies up to
500 GHz in Fig. 3 and prevents us from checking if βð0;ωÞ
has also resonances at the phonon or electromagnon
frequencies of about 4300 and 7000 GHz.
In summary, molecular dynamics effective Hamiltonian

simulations predicting the response of the polarization and
magnetization to time-dependent magnetic fields of differ-
ent ac frequencies allowed us to extract the dispersion of
the quadratic ME coefficient up to 500 GHz. In particular,
electromagnons having phonon frequencies are found
whether the homogeneous strain is frozen or relaxed during
the simulations. The reported strain-mediated resonances in
the magnetoelectric coupling are of large interest to design
devices with proper shape of the sample for dynamical
applications, since such shape can tune the resonant
mechanical frequencies [56]. Those resonances can be
described by a new type of quasiparticle that we coin
“electroacoustic magnon,”which arises when the frequency
of the ac magnetic field resonantly excites homogeneous
strain modes. This quasiparticle consists of a mixing of
acoustic phonon, optical phonon, and magnon. The calcu-
lations reported in this Letter were done at very low
temperature and high magnitude of the magnetic fields
in order to have less fluctuation of the order parameters
(e.g., polarization and magnetization)—yielding less
numerical noise and thus better accuracy for the magneto-
electric response. However, as shown in the Supplemental
Material [37], our findings (e.g., resonances in the quad-
ratic magnetoelectric coefficients originating from our
discovered electroacoustic magnons) still qualitatively hold
at 300 K and also for smaller magnetic fields. We strongly
believe that these results are not only relevant to BiFeO3 but
rather to many multiferroics due to couplings between
polarization, magnetization, and strains in such systems.
We thus hope that the present results deepen the current
knowledge of multiferroics, in general, and of dynamical
magnetoelectric effects, in particular.
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