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A magnetic helix can be wound into a classical Heisenberg chain by fixing one end while rotating the
other one. We show that in quantum Heisenberg chains of finite length, the magnetization slips back to the
trivial state beyond a finite turning angle. Avoided level crossings thus undermine classical topological
protection. Yet, for special values of the axial Heisenberg anisotropy, stable spin helices form again, which
are nonlocally entangled. Away from these sweet spots, spin helices can be stabilized dynamically or by
dissipation. For half-integer spin chains of odd length, a spin slippage state and its Kramers partner define a
qubit with a nontrivial Berry connection.
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The ongoing downsizing of bits in computational devi-
ces is about to hit the limits given by the coarse-grained
character of matter. Among the promising candidates to
store information on the atomic scale are noncollinear
magnetic structures like domain walls, spin helices, and
magnetic skyrmions [1–3]. These kinds of magnetic struc-
tures cannot be continuously deformed to a trivial state,
e.g., a ferromagnetically ordered one, without letting the
magnetization vanish at some point. The information is
topologically protected. However, systems with a few spins
have two limitations. Classical topological protection
usually decreases with size because the system is more
discrete than continuous. Moreover, small systems are
inherently governed by quantum effects. Topologically
protected states may be left by tunneling.
Conceptually simple magnetic structures with topologi-

cal protection are classical magnetic helices. It is well
established in the context of a spin energy storage, that the
magnetization of classical spin chains of finite length can
be wound up to a helix when the first spin is rotated slowly
while the last one is fixed [4]. A finite number of rotations
is possible before the spins slip back and the system
partially releases its attained energy. Besides acting as a
spin energy storage, by tuning the winding number of a
spin helix, full control of the overlap between the Majorana
bound states of helically magnetized one dimensional
topological superconductors [5] becomes possible. This
implements additional [6] dynamical quantum gates. Static
helices that rely on Ruderman-Kittel-Kasuya-Yosida or
Dzyaloshinskii-Moriya interactions do not offer this pos-
sibility [7–9].
The extension of the concept of spin helix states to the

quantum regime may evoke surprising new properties
of which a few have been recently revealed theoretically
[10–14]. Stable quantum spin-1=2 helices at infinitely
strong coupling of the first and last spin of the chain to

dissipative baths, for instance, have been shown to exist
only for specific values of the axial Heisenberg anisotropy
matching the cosine of the relative turning angle between
two neighboring spins [11,12]. At these fine-tuned sweet
spots, the helix state is a pure product state of local spin
states [12–14]. Spin helices and spin slips additionally
appear in superfluid spin transport and are related to
superconducting charge transport in thin wires [15–23].
Experimentally, few-atom spin chains are at the forefront of
research, realizing locally controllable magnetic moments
of magnetic islands [24], boundary-controlled spin manipu-
lation [25], and noncollinear magnetism [26]. In these
setups, the finite size of the spin chains is crucial regarding
the observed physics and prospects for computational
applications.
In this Letter, we show that the dynamic winding-up of

Heisenberg quantum spin chains of finite length reveals
nontrivial quantum mechanical features. First, quantum
spin slippage occurs in the winding process which is absent
in classical chains and which prevents stable quantum spin
helices from occurring. Generic quantum-mechanical
avoided energy level crossings let the quantum spin chain
prematurely slip to the trivial collinear state. Second, we
find for general spin quantum numbers a cascade of sweet
spots of the axial anisotropy for which most relevant
avoided level crossings numerically vanish and which
include the special cases for the quantum spin-1=2 chains
with infinitely strong boundary dissipation as a subclass
[12]. Third, we find that the quantum spin helix state is
nonlocally entangled, which generalizes Ref. [12]. In
addition, we show that finite-size quantum spin helices
can, in general and away from the sweet spots, be realized
by dynamic winding protocols that exploit Landau-Zener
transitions, or by coupling all spins to a dissipative
magnetic environment. Furthermore, we point out that
the quantum slippage states themselves are interesting
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objects: For chains of half-integer spins with an odd length,
the energetically lowest slippage state is a Kramers partner
of the ground state at a twisting angle of π=2 and both states
are separated energetically from the rest of the spectrum.
These states define a qubit with a nontrivial gate operation
realized by adiabatic time evolution.
Model.—We consider the XXZ Heisenberg model of a

chain of n quantum spins Si [27–29]. The terminal spins are
completely fixed by external control fields, for instance,
stemming from magnetic islands as experimentally realized
in Ref. [25]. Effectively, the terminal spins can be treated
classically. The Hamiltonian is

HðtÞ ¼
Xn−2

i¼2

JðSxi Sxiþ1 þ Syi S
y
iþ1Þ þ ΔSziS

z
iþ1

þ JS½B̂1S2 þ B̂nðtÞSn−1�: ð1Þ
Here, J is the Heisenberg exchange coupling and Δ the
axial Heisenberg anisotropy. The external field B̂1 ¼
ð1; 0; 0ÞT fixes the first spin of the chain, the field B̂nðtÞ ¼
ðcosϕðtÞ; sinϕðtÞ; 0ÞT rotates the last spin, e.g., ϕðtÞ ¼ ωt.
The finite size of the spin chain here plays the important
role of letting the external fields polarize the center of the
chain significantly. In the thermodynamic limit, i.e.,
n → ∞, the ground state can be unordered and gapless
depending on J, Δ, and the spin quantum number [30].
For simplicity, we assume a ferromagnetic coupling, i.e., J,
Δ < 0, and a preferred orientation of the spins in the x-y
plane, i.e., jΔj < jJj.
Quantum spin slippage.—Initializing the spin chain in

its ordered ground state and letting time run, the last spin is
rotated. For sufficiently slow dynamics, the spins gradually
follow the orientation of their nearest neighbors. In a clas-
sical chain, a spin helix develops, as shown in Fig. 1(a). For
quantum spins in finite chains, however, the situation is
different. In Fig. 1(b), we depict the expectation values of
the spins hSi. Instead of forming a helix, the expectation
values of some spins vanish at a twisting angle around π=2.
This behavior appears for almost all values of Δ in the
planar regime. We denote this phenomenon as quantum
spin slippage.

Quantum spin slippage may seem odd on first sight
because hSi2 cannot vanish for an isolated spin. Here,
however, several spins entangle to let the magnitude of hSi
vanish, a situation similar to a spin-singlet state. The
generic origin of quantum slippage is a quantum mechani-
cal avoided crossing of energy levels of the chain due to
which the adiabatic time evolution is incapable of reaching
energetically higher states. The situation is depicted in
Fig. 2(a) for a chain of n ¼ 7 spins with S ¼ ℏ=2 at Δ ¼ 0.
The energetically lowest two states separate from the rest of
the spectrum and cannot be reached by adiabatic time
evolution. The width of the blue trace indicates the weight
of the dynamic state when decomposed into the instanta-
neous eigenstates. The situation remains unchanged when
rotating the last spin with a finite angular velocity. The
diabatic dynamics is depicted in Fig. 2(b). Instead of
developing a spin helix by tunneling through the avoided
level crossing, the system disperses into several eigenstates
and the spin texture disorders.
Quantum spin helices at sweet spots.—As is well known

from solid states physics, symmetries of the Hamiltonian
may occur for special values of the parameters such that
avoided level crossings close and quantum spin helices can
be wound up. Such sweet spots also exist for the quantum
spin chains at hand. We determine numerically those values
of the Heisenberg anisotropy Δ, for which the energy gap
E1 between the ground and the first excited state vanishes in
dependence on S and the chain length. Notably, when this
particular gap closes, most of the other relevant avoided
level crossings close as well, see [31]. We depict the
dependence of E1 on Δ for S ≤ ℏ in Fig. 3. Cases with
S > ℏ are addressed in the Supplemental Material [31]. The
sweet spots fall into two categories. The first one is
universal in S and, to begin with, comprises the values
Δ ¼ J cos½π=ðn − 1Þ�. Remarkably, π=ðn − 1Þ is exactly
the averaged twisting angle of adjacent spins. Additionally,
for S ¼ ℏ=2, the first category includes the values
Δ ¼ J cosðπ=mÞ, where m may take any odd integer value
smaller than n. We note that, for infinite spin chains, there
are infinitely many sweet spots, which nicely agrees with
the gapless ground state of infinite spin-1=2 chains in the
planar regime [30]. The sweet spot Δ ¼ J=2 stands out as
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FIG. 1. Spin orientation during winding-up spin helices. The first spin is fixed while the last one is adiabatically slowly rotated by the
angle ϕ. (a) Classical spins, simulated with the Landau-Lifshitz-Gilbert equation corresponding to Eq. (1) and large Gilbert damping. A
spin helix develops. (b) Quantum spins, shown are the expectation values hSii at Δ ¼ 0. At ϕ ¼ π, the middle spins slip where the local
spin expectation reaches zero. No helix develops.
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being independent of the length for chains with S ¼ ℏ=2.
The second category comprises all other sweet spots, which
generally depend on both S and n and are tabularized in
[31]. It is worth noting that, here, all spin-1=2 chains are
integrable [32,33], while all discussed chains with a larger
spin quantum number are not [34–36]. We corroborate this
by a level spacing analysis [37–39] that indicates a
symmetry related origin of the sweet spots, see [31].
The impact of the sweet spots on the dynamic winding-

up of a helix is shown in Fig. 2(c). Here, all relevant
avoided level crossings for n ¼ 7, S ¼ ℏ=2 close for
Δ ¼ J=2. An adiabatic or a sufficiently slow diabiatic time
evolution is consequently able to wind up a quantum spin
helix. We depict this in Figs. 2(c) and 2(d), where the
quantum spin helix state climbs up in energy and remains
helical without premature slippage.
Interestingly, the first category of sweet spots contains

the mentioned ones for spin-1=2 chains with boundary
dissipation [11,12], which are associated to quantum spin
helices formed by a pure product state of local spin-1=2

states jΨi ∝ ⊗
n−1

k¼0
ðe−iφk=2; eiφk=2ÞT . The nature of the

dynamically constructed quantum helix, here, however,
is nontrivial: These quantum helices are nonlocally
entangled. This can be seen from the spin-spin correlation

χλðsÞ ¼ hSλ1Sλ1þsi − hSλ1ihSλ1þsi where λ ∈ fx; y; zg, which
vanishes for local product states. The result for S ¼ ℏ=2,
n ¼ 12 in a helical state of one full twist is shown in Fig. 4
and is clearly nonzero for a finite range of spins along the
chain. These helical states are pure eigenstates, which
potentially easily decay by external perturbations. Yet, we
find a vast insensitivity against local parametric magnetic
fluctuations at the sweet spots in first-order perturbation
theory [31].
The sweet spots require fine-tuning of the Hamiltonian in

order to realize a quantum spin helix. In the following, we
present two less restrictive options how the avoided level
crossings can be overcome and the slippage angle of a
quantum spin chain be increased. The first one is the use of
different dynamic Landau-Zener protocols in the vicinity of
the sweet spots, while the second one is the coupling to a
magnetic environment.
Dynamic Landau-Zener protocols.—In the vicinity of

the sweet spots, Δ − ϵmatches the value of a sweet spot for
a small ϵ. The relevant level crossings do not vanish in this
case, but remain small. The transition is therefore well
approximated by a two level Hamiltonian

HLZðϕÞ ¼ Eϕσ0 þ
ELZ

2
σx þ

vLZðϕþ δϕLZÞ
2

σz; ð2Þ

FIG. 3. Energy gap E1 between the ground state and the first
excited state at a twisting angle ϕ ¼ π in dependence on Δ for
S ≤ ℏ. The energy gap vanishes (numerically) exactly at the
sweet spots Δ ¼ J cosðπ=mÞ, with odd m < n for S ¼ ℏ=2 and
m ¼ n − 1 for S ¼ ℏ.

FIG. 4. Spin-spin correlation in units of ℏ2=4 for S ¼ ℏ=2,
Δ ¼ J=2, and n ¼ 12 at a helical state of one full twist (spin
expectation values shown in inset). The spins are nonlocally
entangled.

FIG. 2. Adiabatic and diabatic time evolution of the ground state. The instantaneous spectrum, Eq. (1), is marked by dotted black lines,
the weight of the time-dependent state projected onto the instantaneous eigenstates is reflected by the width of the blue stripes.
(a) Adiabatic evolution for Δ ¼ 0. The two energetically lowest states are separated from higher states by an avoided level crossing. No
helical state develops. (b) Diabatic evolution for Δ ¼ 0. The avoided level crossing is not perfectly overcome by rotating the spins with a
finite angular velocity, ϕðtÞ ¼ −0.3Jt=ℏ. (c) Adiabatic evolution for the sweet spot Δ ¼ J=2. The avoided level crossings close. A
helical state develops. (d) Diabiatic evolution for Δ ¼ J=2. Turning the spins sufficiently slowly still results in a quantum spin helix,
ϕðtÞ ¼ −0.3Jt=ℏ.
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with the energy gap ELZ, the coupling vLZ, and δϕLZ,
which describes a possible shift of the level crossing.
Furthermore, σi are the Paulimatrices andEϕ is the energetic
background. For instance, the first such transition of a chain
with S ¼ ℏ=2 and n ¼ 7 happens at a twisting angleϕ ¼ 4

3
π

and is characterized by ELZ=ϵ ¼ −0.634, vLZ=J ¼ 0.990,
and δϕLZJ=ϵ ¼ 0.252. These values, can be applied to
known protocols that perfectly overcome the avoided level
crossing. One is the infinitely fast Landau-Zener transition
[40], another one is a π pulse in a resonant Rabi cycle, and a
third one is an adiabatic, or piecewise adiabatic frequency
chirp [41]. More involved protocols are also feasible
[42,43]. These techniques are not necessarily connected
to optical methods in our setup. They merely correspond to
being able to rotate the last spin by specific angles.
Dissipative magnetic environment. As depicted in Fig. 1,

quantum spin slippage is connected to vanishing local spin
expectation values. A coupling to a magnetic environment
effectively partially measures the quantum spins, gradually
turning them into classical spins. By this, the magnitude of
the spin expectation vector is stabilized. On the other hand,
the environment opens additional decay channels and tries
to relax the spins. To figure out which effect is dominant,
we consider a coupling to local bosonic magnetic fluctua-
tions described by the coupling Hamiltonian

Hfluct ¼ α
Xn

i¼1

X

λ∈fx;y;zg

X

κ

Sλi ðbλi;κ þ bλ†i;κÞ: ð3Þ

Performing second order Keldysh formalism in α yields a
local magnetic backaction of the form

P
n
i¼1

R
dτχðτÞ×

SIið0ÞSIið−τÞ, where the superscript I indicates the inter-
action picture. Within mean-field theory, and assuming a
stationary state, we arrive at the effective mean-field
Hamiltonian (see [31] for details)

Hmf ¼ λmfJ
Xn

i¼1

ð2Si − hSiiÞhSii; ð4Þ

where λmf is a real constant. Thus, the bosonic magnetic
fluctuations generate self-stabilizing local Zeeman fields
that suppress quantum spin slippage. In Fig. 5, we depict
the slippage angle in dependence on λmf for different chain
lengths and S ¼ ℏ=2. The slippage angle increases with
the chain length but eventually saturates in dependence on
the dissipation strength. This saturation corresponds to the
inability of a classical spin chain to be twisted more than a
certain amount before it relaxes [4]. We expect the behavior
for larger spin quantum numbers, which behave more like
classical spins, to be qualitatively the same. Increasing
the temperature of the magnetic environment generally
increases the mean-field coupling λmf as well. The spin-
spin correlation along the chain, cf. Fig. 4, decreases in λmf,
such that at jλmf j → ∞ the spiral state recovers the non-
entangled local product states of Ref. [14].

Quantum computing with spin slippage states.—Next,
we show how the quantum spin chains can be used for spin-
chain-based quantum computing. From Fig. 2(a), we
observe that the adiabatic evolution away from the sweet
spots does not return to the ground state after a revolution
by 2π, but only after a revolution by 4π. The exact level
crossing of the first and the second level at an angle of π,
which is needed for this behavior, is generic and indepen-
dent of Δ for the case of half-integer spins and an odd
length. The two crossing levels are Kramers partners; i.e.,
they are connected by an antiunitary symmetry A that
squares to −1. We find that A ¼ AK, where

A ¼ Tj⇔n−jþ1e
iπ
P

n
k¼1

Syk ð5Þ
is the unitary transformation representing a rotation of all
spins around the y axis by an angle of π and the subsequent
exchange of the jth and the (n − jþ 1)th spin, denoted by
the permutation matrix Tj⇔n−jþ1. Moreover, K is complex
conjugation and we use the standard representation, where
Sy is a purely imaginary matrix. Squaring A yields A2 ¼
ð−1Þ2Sn, which establishes the desired Kramers degeneracy
exactly for half-integer spins and chains of odd length. The
result is independent of J and Δ and hence also applies to
antiferromagnetic chains and to the axial regime jΔj ≥ jJj.
The first excited state can, in conjunction with the ground
state, be used as an energetically split qubit. The adiabatic
evolution of a full revolution ϕ ¼ 2π realizes the unitary
quantum gate Uπ ¼ iσx. After two full revolutions of the
last spin, the Berry phase is π, hence, still nontrivial. The
protected degeneracy of the ground and first excited state
can also be interpreted physically: For Δ ¼ J (XXXmodel),
one full revolution adiabatically pumps a single magnetic
excitation into the chain that carries a total spin of ℏ=2,
independent of the spin quantum number of the chain. The
qubit states may thus be distinguished by measuring the
total magnetization or the magnetoresistance.
Conclusions.—The dynamic winding-up of a quantum

spin helix shows many nontrivial features as compared to
its classical counterpart. The topological protection of the
classical helix is generally overcome by tunneling, and
quantum spin slippage occurs in chains of finite length.

FIG. 5. Stabilization of quantum spin helices by a local
dissipative bath. Slippage angle in mean-field approximation
for S ¼ ℏ=2, Δ ¼ 0 for different chain lengths.
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Only at sweet spots of the axial Heisenberg anisotropy,
classical topological protection is restored. Interestingly,
topologically protected quantum helices are not formed
only by product states of local spin states, but are instead
entangled. Quantum spin slippage can be avoided dynami-
cally by Landau-Zener protocols or by a magnetic envi-
ronment. Finally, the first quantum slippage state, in the
case of half-integer spins and chains of even length, forms a
Kramers symmetry-protected qubit with the ground state,
which is well separated from the rest of the spectrum. The
resulting protected adiabatic qubit can be used for adiabatic
quantum computing by having a nontrivial Berry connec-
tion. Arrays of spin chains could potentially be used for
universal adiabatic quantum computing.
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