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Observation of Topological Edge Modes in a Quasiperiodic Acoustic Waveguide
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Topological boundary and interface modes are generated in an acoustic waveguide by simple quasiperiodic
patterning of the walls. The procedure opens many topological gaps in the resonant spectrum and qualitative
as well as quantitative assessments of their topological character are supplied. In particular, computations of
the bulk invariant for the continuum wave equation are performed. The experimental measurements
reproduce the theoretical predictions with high fidelity. In particular, acoustic modes with high Q factors
localized in the middle of a breathable waveguide are engineered by a simple patterning of the walls.
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The ideas based on topological concepts [1,2] have
revolutionized the field of condensed matter physics and
led to the discovery of topological insulators and super-
conductors. The latter have been classified at the end of the
previous decade [3-6] and a table of strong topological
phases has been conjectured. One of their common char-
acteristics is the emergence of disorder-immune boundary
modes whenever a sample is halved. Physics akin to that of
topological condensed matter systems has also been pre-
dicted in classical wave-supporting materials [7,8] and
many examples of topological metamaterials have been
reported in the literature [9-22].

At the same time, it has been pointed out that the periodic
table of topological systems is highly enhanced if more
complex systems are considered, such as the quasiperiodic
or quasicrystalline ones [23-26]. In Ref. [27], K-theoretic
arguments [28,29] were applied for quasiperiodically
coupled discrete mechanical resonators. The finding was
that, if these are single-mode resonators, then every gap in
the bulk resonant spectrum is topological, in the sense that
it will be completely filled by boundary spectrum under any
boundary condition. The practical value of the finding is
that the quasiperiodic Hamiltonians display a large number
of topological gaps; hence one can generate localized wave
modes in both space and energy by simply halving the
system.

In this work, we put these general principles to the test in
a completely different regime and we implement them for
the first time using sound waves. Acoustic setups have been
successfully used in the past to generate topological edge
modes [30-32] and even to map the Hofstadter butterfly
[33]. In particular, Refs. [32,33] introduced reconfigurable
acoustic resonant structures where the building blocks are
sealed acoustic chambers connected via thin bridges. They
have isolated resonant modes; hence these structures fall
under the umbrella of patterned resonators introduced in
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Ref. [27] and they can be analyzed by similar methods.
However, these types of acoustic structures are not breath-
able, which is a key requirement for many practical
applications. As such, here we ask the question: Can
one generate topological edge and interface modes by
patterning the walls of an acoustic waveguide without
impeding the air flow?

As we shall see, the answer is yes, but the methods of
analysis are very different from those introduced in
Ref. [27]. Indeed, the picture of coupled discrete resonators
is no longer applicable and a full continuum medium
treatment must be employed for the theoretical analysis.
Furthermore, the topological character of the spectral gaps
cannot be taken for granted because the waveguide sup-
ports many overlapping modes. As such, a new assessment
of the topological character is introduced based on the
continuum version of the lattice noncommutative Chern
number proposed in Ref. [25] and achieved in Ref. [34].
This invariant is here evaluated numerically using the
methods developed in Refs. [35,36]. Let us recall from
Ref. [27] that the role of aperiodicity in this type of
application is to generate virtual dimensions and, as we
shall see [37], the Chern number mentioned above is
defined on a three-dimensional noncommutative manifold,
while for discrete patterns it is defined on a two-
dimensional manifold.

At the experimental level, challenges exist because some
of the spectral bands are very narrow and this, together with
the aperiodicity, can lead to irregular mode profiles,
although the bulk states are extended. As such, the only
way to accurately map the bulk spectrum is to collect data
from a large number of points along the waveguide.
Following this protocol, we map not only the frequency
but also the spatial profile of the bulk modes. Furthermore,
inside the topological bulk gaps, we were able to detect
sharp edge modes, which flow with the phason degree of
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Top: Photograph of the waveguide configuration used to measure topological interface modes. Bottom: Cross section and

geometrical parameters. The waveguide consists of interlocking 3D-printed PLA parts as shown in the inset and it is mirrored relative to
the domain wall indicated by the dashed line. For experimentation, a speaker is placed at portholes accessible in each chamber and a
piezoelectric microphone is inserted into an opposite porthole. The portholes that are not in use are sealed. The lengths L, were
generated with Eq. (1) and their average was fixed at L,, = 40 mm. The parameters in Eq. (1) were fixed at AL = 0.2L,, and
6 = (2z/+/117). This particular irrational fraction of 27 accepts a good rational approximation § = (97/48) 4+ O(10~3), which was
used in some of the numerical calculations. The system was also run without a domain wall, for bulk and edge measurements.

freedom in a manner consistent with the computed Chern
numbers.

The quasiperiodic acoustic waveguide consists of a
uniform cylindrical tube decorated with walls. The parts
were 3D printed out of polylactic acid (PLA) using an
Ultimaker 3 and then assembled as in Fig. 1. The walls have
identical thickness, but the spacings between adjacent walls
are modulated according to the algorithm

L, = L,, + ALsin(n6 + ¢), nez. (1)
The geometric parameters used in the experiments are
supplied in Fig. 1. To make the above labels meaningful,
we assume that the waveguide is centered at a point
inside Lj. In Eq. (1), € is an angle incommensurate with
27, which will be kept fixed during the measurements, and
¢ is the phason, which should be let to vary. For example, a
simple relabeling n — n 4+ m, which corresponds to recen-
tering the waveguide, will change ¢ into (¢ + m6)mod 2x.
Since € is incommensurate, these relabelings alone will
sample the phason densely in the [0, 2] interval. L,, in
Eq. (1) is the average distance between the walls and AL
sets the magnitude of the fluctuations in L,,.

In the inset of Fig. 1, we show a front view of the
waveguide, confirming that air can flow freely through
the structure. It is then somewhat striking that, with the
proposed patterning, we can stop sound propagation over
several intervals of frequencies and, furthermore, we can
generate, very much on demand, topological sound modes
localized at any desired location along the tube. As opposed
to an ordinary resonant mode produced in a fully sealed
acoustic chamber, the interface modes produced in the
present work have less contact with the boundary; hence
they are expected to have very high Q factors, a much
desired characteristic for practical applications.

To understand the effect of the patterning, we report in
Fig. 2 the dispersion of the acoustic modes for clean and
periodically (L, = L,,) patterned waveguides, as well as
the resonant spectrum of the aperiodically patterned wave-
guide [L, set by Eq. (1)]. As expected for quasi-one-
dimensional wave propagation, the periodic pattern opens
spectral gaps in the gapless spectrum of the clean tube.
These gaps, however, are not topological. The role of
aperiodicity is to open additional gaps in the spectrum that,
as one can see, resemble quite closely the Hofstadter
butterfly [38], when mapped as a function of 0. As we
shall see, these are the gaps that carry nontrivial bulk-
topological invariants prompting the topological edge
and interface modes. Let us mention that the spectra in
Fig. 2 were produced with an in-house FORTRAN code,
which diagonalizes the Laplace operator expressed in the
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FIG.2. (a)Dispersion of the acoustic modes for the unpatterned

waveguide, for m =0 sector. (b) The band structure of a
periodically patterned waveguide (i.e., @ = 0), for m = 0 sector.
(c),(d) Resonant spectrum of a patterned waveguide as function
of 9, for m = 0, 1 sectors, respectively.
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cylindrical coordinates (p, z) and resolved over the azimu-
thal symmetry sectors. In appropriate units, the operator
reads

1o o0 m?> &

A - a T T A 0
T P PR

m=0,%+1,..., (2)

and the von Neumann condition is considered at the
boundary. Recall that the latter is set by € and ¢; hence
A,, depends in a fundamental way on these parameters. The
Laplace operator was discretized using finite differences.

The protocol for acoustic data acquisition was as
follows. Sinusoidal signals of duration 1 s and amplitude
of 0.5 V were produced by a Rigol DG1022 function
generator, amplified by a Crown XLS 2502 power amplifier
with the gain set to 6, and then applied on a CUI Inc.
GF0501 speaker, placed at one of the portholes. A PCB
Piezotronics Model-378C10 microphone and a PCB
Piezotronics Model-485B12 power conditioner acquired
the acoustic signals at a porthole opposite the speaker (see
Fig. 1). To account for the frequency-dependent response
of the components, a separate measurement is performed
with the waveguide removed but speaker and microphone
kept in the same positions. All readings are normalized
by the output of these measurements. The outputs were
read by a custom LABVIEW code via a National
Instruments USB-6112 data acquisition box and the ratio
of the two measurements is stored on a computer for
graphic renderings.

For the bulk measurements, the protocol was repeated
for all 48 chambers of a patterned waveguide, with
frequency scans from 500 to 6000 Hz in 25 Hz steps.
The results are reported in Fig. 3. When the data are
rendered as a function of frequency and chamber index,
clear extended acoustic modes can be identified.
Furthermore, when the data are collapsed on the fre-
quency axis, clear spectral gaps can be identified, two of
which are predicted to be topological. Unfortunately, the
m =0, 1 spectra overlap above the nontopological gap
(see Fig. 2) and the higher frequency topological gaps
could not be experimentally resolved. Let us note that
the agreement between experiment and theory in Fig. 3 is
better than 95%.

To assess the topological character of the gaps, we
employ the bulk-boundary correspondence for continuum
models established in Ref. [34]. The bulk-topological
invariant is supplied by the noncommutative Chern number
of the gap projection Pg = ¥(—c0.6)[Am(¢) — GI:

Ch(Pg) = Tr {P;[04P¢, (Z, Pg)]}, 3)

where Z is the position operator parallel to the tube and Tr;,
is the trace per length. The invariant can be computed at any
arbitrary but fixed phason value, which is a consequence
of the Birkhoff ergodic theorem [39]. With the Laplacian
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FIG. 3. Bulk resonant spectrum for the geometry described in

Fig. 1. Left: Theoretical resonant spectrum reproduced from
Fig. 2(c), with arrows indicating the topological gaps. The
vertical marking identifies @ = (2z/+/117), used in experiments.
Center: Normalized microphone readings from the center of 48
chambers, recorded over a wide frequency interval. Right:
Collapse on the frequency axis of the intensity plot reported
in the mid panel. Three spectral gaps can be clearly identified in
the experimental data and seen to be well aligned with the
theoretical calculations. The values of the Chern numbers for the
two topological gaps are also indicated.

discretized on a lattice via finite differences, Eq. (3) was
evaluated using methods which are by now standard [35,36].
The results are reported in Fig. 3, confirming that the smaller
gaps are topological. Furthermore, Ref. [34] established the
existence of a boundary topological invariant which counts
the number of chiral boundary bands, as well as the equality
between the bulk and boundary invariants.

The presence of chiral modes, in accordance with the
above bulk-boundary principle, is confirmed by our
numerical simulations reported in Fig. 4(a). To map the
boundary modes experimentally, the acquisition protocol
was applied on the second chamber from the left physical
edge, which was plugged. The frequency was swept from
2.0 to 2.6 kHz in steps of 25 Hz and the value of the phason
was modified by moving the physical edge sequentially to
the right, hence, from Ly to L,, n = 1,2, .... The results are
presented in Fig. 4(b) and they indeed confirm the existence
of one chiral band in the upper topological gap and two
such bands in the lower topological gap. For reference, we
reproduced in Fig. 4(c) the experimental data from Fig. 3,
from where the exact position of the bulk edges can be
inferred. As one can see, the boundary resonances occur
inside the bulk gaps and the dispersion with ¢ is consistent
with the theoretical prediction.

095501-3



PHYSICAL REVIEW LETTERS 122, 095501 (2019)

Max.

24 %1 s 23232l 230 g0 00y g8z ¥

22— - —

Frequency (kHz)

20 } - . |

H EEEENEEENEBERDNENBSE S NN - (/\((!%

Frequency (kHz)

FIG. 4. Topological edge spectrum. (a) Theoretical prediction
of the spectral flow against the phason parameter ¢, demonstrat-
ing the existence of chiral bands. The red (blue) marks relate to
the left (right) edge of the waveguide. (b) Experimental mapping
of the spectral flow, confirming the existence of chiral bands.
(c) The measurements for bulk spectrum, reproduced from Fig. 3,
indicating the position of the bulk gap edges.

We now demonstrate that a localized topological edge
mode can be created without the assistance of any plug. For
this, we consider a domain wall configuration,

cer |L31 |L30|L29|L29|L30|L31 | I

where the waveguide is mirror reflected relative to the
left edge of the L,9 chamber. This particular index was
chosen because moving the origin to that chamber gen-
erates a phason, ¢ = (290)mod 2z, which coincides with
the value where strong midgap edge modes were observed
in the first topological gap. Since Eq. (3) is odd under
reflection, with this patterning, an interface between
topological systems with opposite Chern numbers is
created As such, the bulk-boundary principle predicts
the emergence of 2Ch acoustic modes localized at the
interface.

The experimental measurements are reported in
Fig. 5(a). The frequencies were swept as in Fig. 4 and,
in order to probe the localization of the acoustic modes,
the speaker and microphone were placed at several port-
holes at and away from the interface. A strong and sharp
resonance was detected in the first topological gap
(Ch = 1), when the measurements were performed one
and two chambers away from the interface. The resonance
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FIG. 5. (a) Topological interface mode, measured for a wave-
guide configuration similar to that in Fig. 1. The spatial
localization of the interface mode was mapped by moving the
speaker and microphone incrementally away from the domain
wall. (b) The topological interface mode is also observed in
coMSOL simulations. Red, blue, and green colors represent high,
low, and zero pressure variations, respectively.

was not detectable farther away from the interface or at
the interface itself. A similar resonance can be detected at
the other side of the interface, leading to a full confirmation
of the topological bulk-boundary prediction. The interface
mode is also observed in a standard comMsOL simulation,
as shown in Fig. 5(b).

In conclusion, we have demonstrated that topological
edge and interface modes can be created by a simple
quasiperiodic patterning of an acoustic waveguide. The
topological gaps can be easily identified when the resonant
spectrum is mapped as a function of modulation parameter
0. Furthermore, a topological invariant was computed and
shown to be in agreement with the number of observed
topological chiral edge modes.

As we have seen, quasiperiodicity opens topological
gaps inside the bands of the periodic structure, which
resemble the Hofstadter butterfly when mapped as a
function of 6. Optimization over AL in Eq. (1) and the
geometric parameters of the tube, as well as improvements
in materials (e.g., by replacing the polymer with metal), can
highly enhance these topological gaps and the Q factors of
the topological boundary and interface modes. Other than
that, the procedure requires no further fine-tuning and, due
to its simplicity, we believe it can be easily incorporated in
practical applications. The present analysis can also serve
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as a model for acoustic implementations of many other
promising aperiodic structures [40].
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