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We study collective “free-space” radiation properties of two distant single-layer arrays of quantum
emitters as two-level atoms. We show that this system can support a long-lived Bell superposition state of
atomic excitations exhibiting strong subradiance, which corresponds to a nonlocal excitation of the two
arrays. We describe the preparation of these states and their application in quantum information as a
resource of nonlocal entanglement, including deterministic quantum state transfer with high fidelity
between the arrays representing quantum memories. We discuss experimental realizations using cold atoms
in optical trap arrays with subwavelength spacing, and analyze the role of imperfections.
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Introduction.—Recent advances in preparing regular
arrays of atoms with optical traps [1–4] offer new oppor-
tunities to engineer strong collective coupling between
atoms and light, with applications in quantum information
science. In particular, a single layer of atoms loaded into a
regular 2D array with subwavelength spacing has been
proposed as an atomic mirror with high reflectivity [5–9],
as quantum memory with efficient storage and retrieval
[10], and to implement topological quantum optics [11,12];
in addition, emission of single photons from bilayer atomic
arrays can be engineered to be highly directional in free-
space [13]. Moreover, single-layered atomic arrays have
been shown to support subradiant collective excitations
[14–16], which consist of excited superposition states of
atoms decaying much slower than a single isolated excited
atom, due to interference in spontaneous emission [17–23].
Here we show that the composite quantum system

consisting of two distant single-layered arrays of atoms
[cf. Figs. 1(a)–1(c)] can support an atomic Bell super-
position state exhibiting strong subradiance. Remarkably,
this nonradiating “dark” state is a nonlocal entangled
state, i.e., a superposition state of a collective excitation
living in the first or second array, where the two arrays can
be separated by a distance L much larger than the
transverse size L⊥ of each individual array. This phe-
nomenon relies on two ingredients. First, spontaneous
emission from a collective atomic excitation in a single
layer can be directional, with a proper phasing of the
atomic dipoles, corresponding to light emission in both
directions perpendicular to the atomic array, as in Fig. 1(a)
[5]. Second, radiation from two distant atomic arrays
can—provided the separation length L is commensurate
with half the optical wavelength [upper panel in Fig. 1(c)]—
lead to destructive interference of light emitted to the left
and to the right of the two arrays, corresponding to a

subradiant state; i.e., this dark state will show strongly
suppressed radiative loss to the outside world. In contrast,
the lower panel in Fig. 1(c) displays a “bright” (i.e.,
radiating) state due to constructive interference.
Below we will show that these nonlocal subradiant

atomic superposition states can be prepared naturally in
setups involving two—or more—atomic arrays, and pro-
vide a source of entanglement shared between the two
atomic arrays, with applications for quantum networking
[24]. In particular, quantum information can be exchanged
between the arrays representing “local” quantum memo-
ries, in a coherent and deterministic process, with dark
states acting as mediators.
Quantum optical model.—Our setup consists of two 2D

arrays of N ¼ N⊥ × N⊥ atomic emitters with lattice
spacing δ⊥ and size L⊥ ≡ N⊥δ⊥, separated by a distance
L along z. Each atom has a ground and an excited state, jgij
and jeij, and is coupled to free-space modes of the radiation
field via a dipole transition with frequency ω0 ¼ ck0 ¼
2πc=λ0. Here the multi-index j ¼ ðj⊥; jzÞ, where jz ¼ 1, 2
labels the arrays, while j⊥ ¼ ðjx; jyÞ label the atoms within
each array, with 1 ≤ jx, jy ≤ N⊥. Atomic positions are
denoted by rj ¼ ðxj; yj; zjÞ. We start by studying the
dynamics of a single excitation with wave function
jψðtÞi ¼P

jcjðtÞσþj jGij0iþ
R
dk

P
λψλðk; tÞjGijk;λi. Here

σþj ¼ jeijhgj, jGi ¼⊗j jgij, j0i is the photonic vacuum state
and jk; λi the state with a single photon with wave vector k
and polarization λ. We extend our results below to states
with multiple excitations.
The atomic dynamics, due to successive photon emis-

sions and reabsorptions, is obtained by integrating out the
dynamics of the radiation modes ψλðk; tÞ in a Born-Markov
approximation. Assuming the field initially in the vacuum
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state ψλðk; 0Þ ¼ 0, this yields _cj ¼ −i
P

j0Hj;j0cj0 , where in a
frame rotating with ω0 [25–27],

Hj;j0 ≡ −iðγe=2Þp� · Ĝðrj − rj0 Þ · p ð1Þ

is a non-Hermitian effective Hamiltonian, whose Hermitian
part describes coherent exchanges of atomic excitations,
while the non-Hermitian part corresponds to dissipation
accounting for radiation of photons. Here γe is the
spontaneous decay rate of each atom, and the dyadic
Green’s tensor ĜðrÞ, representing the electric field at
position r generated by a dipole located at the origin, is
the solution of ∇×∇× ĜðrÞ− k20ĜðrÞ þ ð6πi=k0ÞδðrÞ ¼ 0

with Ĝð0Þ≡ 1 accounting for independent single-atom
decay (see details in Ref. [28]). The atomic transition
polarization p is taken circular, with z as quantization axis.
Dark and bright eigenstates.—The dynamics of atomic

excitations, including their radiative properties, can be
understood by studying the spectrum of H. Denoting its
eigenvalues as ϵn ¼ Δn − iγn=2 (with n ¼ 1;…; 2N), Δn
is interpreted as the self-energy of the collective atomic
excitation given by the corresponding eigenstate cn,
while γn is its spontaneous emission rate. In particular,

an eigenstate is subradiant (or dark) if spontaneous
emission occurs with a rate suppressed below the single-
atom decay rate γe. In view of the mirror symmetry of the
system, all eigenstates have a definite parity; i.e., they
can be written as ðcnÞðj⊥;1Þ¼pnðcnÞðj⊥;2Þ≡ðvnÞj⊥=

ffiffiffi
2

p
, with

parity pn ¼ �1.
In Fig. 1(d) we plot the decay rates [for the setup of

Fig. 1(c)], with parameters chosen as explained below. One
of the eigenstates is remarkably subradiant, with a decay rate
of γd ∼ 10−3γe. We also represent the mean absolute value of
the transverse quasimomentum q̄, which is obtained from the
discrete Fourier transform of the corresponding eigenvectors
ðṽnÞq ¼

P
j⊥ðvnÞj⊥eiδ⊥j⊥·q=

ffiffiffiffi
N

p
as q̄ ¼ P

qjðṽnÞqj2jqj, with
discrete quasimomentum q ¼ ðqx; qyÞ, where qx;y ¼
−π=δ⊥ þ 2πnx;y=L⊥ (nx;y ¼ 0; 1;…; N⊥ − 1). Two states
have a distinctly low quasimomentum q̄ ≪ k0: the dark
state, as well as a bright state, which radiates photons with a
rate γb comparable to γe. We contrast our dark states with the
q̄ > k0 subradiant states in single layer setups, studied, e.g.,
in Refs. [16,20]. In Fig. 1(e) we show the probability
amplitude of the eigenvectors jðvnÞj⊥ j for the two states
with lowest decay rates [28].
This pair of dark and bright states can be understood by

considering first the situation where the arrays are infinite
(N⊥ → ∞), and the eigenstates are plane waves ðvnÞj⊥ ¼
eiδ⊥j⊥·qn=

ffiffiffiffi
N

p
with continuous quasimomentum qn. We now

make two assumptions: First, the lattice spacing satisfies
δ⊥ < λ0. Under this condition, we obtain, provided jqnj ≤
2π=δ⊥ − k0 [28],

γn ¼ Γ½1þ pn cosðkzLÞ�
k2z þ jqnj2=2

k0qz
; ð2Þ

with Γ ¼ 3πγe=ðk0δ⊥Þ2, kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − jqnj2

p
. Considering in

particular the symmetric (pn ¼ 1) and antisymmetric
(pn ¼ −1) eigenstates with qn ¼ 0, we obtain a pair of
states with decay rates γs=a ¼ Γ½1� cosðk0LÞ�. Similarly,
their self-energies are Δs=a ¼ �ðΓ=2Þ sinðk0LÞ þ Δd, as
depicted in Fig. 2(b), where Δd is a collective Lamb shift
evaluated numerically. Our second assumption is that
k0L ¼ mπ with integer m, so that either γs or γa vanishes
due to interference in the emission of the two arrays, while
the other reduces to γb ¼ 2Γ. The corresponding Bell
states,

jψd=bi ¼
1ffiffiffiffiffiffiffi
2N

p
X

j⊥
½σþðj⊥;1Þ ∓ ð−1Þmσþðj⊥;2Þ�jGi; ð3Þ

are thus, respectively, dark and bright.
For finite-sized arrays, the eigenstates ðvnÞj⊥ are con-

fined, which has two consequences yielding a finite decay
rate γd for the dark state. First, photon emission in the
transverse directions is not perfectly cancelled. Second,
photons emitted along z have a finite spread of transverse

FIG. 1. Dark and bright states in two distant atomic arrays.
(a) Sketch of a single 2D atomic array, with light emitted
perpendicular to the atomic plane (corresponding to a bright,
i.e., radiating state). (b) Two-level scheme. (c) Setup with two
distant atomic arrays: we plot the electric field profile jψðrÞj of
photonic modes (blue) associated with the dark and bright states
as excitations in the two arrays (red). (d) Decay rates γn as the
imaginary part of eigenenergies of the non-Hermitian effective
Hamiltonian H [Eq. (1)], in units of the single atom decay rate
γe, ordered according to their quasimomentum q̄ (see text). The
white (black) color denotes even (odd) parity. A pair of dark and
bright states are identified as the left-most dots. (e) Atomic wave
function amplitudes in each array jðvnÞj⊥ j associated with the
dark and bright state. In (c)–(e) δ⊥ ¼ 0.75λ0,N⊥ ¼ 10, L ¼ 20λ0
(see text).
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momentum, and thus diffract when propagating between
the two arrays, thereby hindering the interference of
emission. This can be mitigated by curving the arrays
according to the phase profile of a Gaussian mode EðrÞ
propagating along z [as shown in Fig. 1(c)], in analogy to
the mirrors of an optical cavity. As represented in Fig. 1(e),
the spatial distribution of the dark state (as well as the bright
state) is then ðvdÞj⊥ ∝ Eðrðj⊥;1ÞÞ [29]. Alternatively, one can
add optical elements between the arrays, such as lenses or
fibers.
The spatial profile of the electric field, generated by

(virtual) photon exchanges between the atomic dipoles in
the dark state, reads ψðrÞ ∼P

jcjĜðr − rjÞ · p, and forms a
standing wave [see Fig. 1(c)]. We emphasize that—
although the system resembles a cavity with each array
acting as a mirror—we are interested here in the quantum
state of the atoms. More precisely, the ratio of atomic to
photonic excitations in the dark state is given by ΓL=ð2cÞ
with speed of light c [28], which is assumed negligible
when integrating the field dynamics above, amounting to
neglecting retardation effects in the atomic dynamics. This
is in analogy to atomic cavities built from strings of atoms
coupled to a 1D waveguide [30,31].
We now discuss how the geometric parameters (N⊥, L,

δ⊥) affect the spectral properties of the system. In Fig. 2(a)
we show the scaling of γd=γb as the relevant figure of merit,
with the waist of EðrÞ minimizing this ratio. Low ratios can
be achieved for L≲ L2⊥=λ0, a condition set by the dif-
fraction limit; i.e., the spot size of the Gaussian mode must
be smaller than the surface of the arrays. Remarkably, this
condition allows us to achieve strong subradiance even
when the characteristic size of each array L⊥ is much
smaller than their separation L; i.e., the subradiant state is

nonlocal. As an example, for N⊥ ¼ 20 and δ⊥ ¼ 0.8λ0
(i.e., L⊥ ¼ 16λ0), we obtain γd=γb ∼ 10−2 for L ∼ 130λ0.
In Fig. 2(b) we observe that the interference mechanism

is quite sensitive to the separation between arrays, as small
deviations of L compared to λ0 will greatly increase the
decay rate γd [see Eq. (2)]. In Fig. 2(c) we show the effect of
the lattice spacing on the saturation value of Fig. 2(a) for
small L. The ratio of dark to bright state decay rates is
minimal for δ⊥ ¼ λ0=2, for which the emission in trans-
verse directions is best cancelled, and scales with the atom
number as γd=γb ∼ 1=N4⊥. The collective shift Δd on the
other hand is typically of the order of γe [cf. Fig. 2(d)].
It can be positive or negative depending on δ⊥, and vanishes
around δ⊥ ¼ 0.2λ0 and δ⊥ ¼ 0.8λ0 (see also Ref. [9]).
Dark state preparation and quantum state transfer.—In

order to prepare the atoms in the dark state, we consider the
setup represented in Fig. 3(a), where the atomic level
structure now includes a third state jsi. We assume that
the system is initially in a superposition state of the first
array Sþ1 jGi, with Sþ1 ¼ P

j⊥ðvdÞj⊥ jsiðj⊥;1Þhgj. This could
be realized, for instance, using laser-dressed Rydberg-
Rydberg interactions [13,32], or single photon pulses
[28]. Moreover, we assume a coherent field drives the
jsi → jei transition in the first array with Rabi frequency
Ω, resonantly with the collective shift Δd. The atoms are
thus driven from state Sþ1 jGi to a superposition of dark and
bright states

P
j⊥ðvdÞj⊥σþðj⊥;1ÞjGi ¼ ð1= ffiffiffi

2
p Þðσþb þ σþd ÞjGi,

where the operators σþd=b ≡ P
j⊥ðvdÞj⊥ðσþðj⊥;1Þ ∓ ½−1�m

σþðj⊥;2ÞÞ=
ffiffiffi
2

p
create a dark and bright atomic excitation.

The decay rate of bright excitations can be orders of
magnitude larger than for dark excitations, such that their
contribution to the dynamics is vastly different. If γb ≫ Ω,

(a) (c)

(d)

(b)

FIG. 2. Dark and bright state properties. (a) Ratio of dark and
bright states decay rates for 1 (blue) and 2 (red) excitations, with
δ⊥ ¼ λ0=2 and L ¼ mλ0=2 with integer m. (b) Collective fre-
quency shifts (dashed blue) and decay rates (red) of parity-
symmetric (s) and antisymmetric (a) single-excitation states, with
δ⊥ ¼ 0.8λ0 and N⊥ ¼ 12. (c) Dark and bright state decay rates,
and (d) collective frequency shift of the dark state, for L ¼ 2λ0,
δ⊥ ¼ λ0=2, and N⊥ as in (a) for 1 excitation.

(a) (b)

(c)

FIG. 3. Quantum state transfer between local quantum memo-
ries. (a) Sketch and atomic Λ-level structure for coupling
quantum memories. A weak homogeneous field Ω, resonant
with the collective atomic shiftΔd, drives the jei → jsi transition.
(b) Temporal evolution of the atomic populations for the initial
state Sþ1 jGi, with N⊥ ¼ 12, L ¼ 30λ0, δ⊥ ¼ 0.8λ0. Red (green):
number of atoms in state jsi in the first (second) array. Black:
total number of atoms in state jei. (c) Infidelity for quantum state
transfer as function of dark and bright state decay rates. Blue dots:
parameters of Fig. 2(a) for 1 excitation. Red curve: Eq. (5).
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the bright mode can be adiabatically eliminated, and
contributes an effective loss with rate Ω2=γb, which can
vanish in the spirit of a quantum Zeno effect. On the other
hand, if Ω ≫ γd, the dynamics will yield oscillations
between the initial state and the nonlocal dark state.
This mechanism can be exploited for quantum state

transfer between the two arrays. Here, an initial qubit
superposition state in the first array jψ ii ¼ cgjGi þ
csS

þ
1 jGi (with jcgj2 þ jcsj2 ¼ 1) is transferred determin-

istically to the second array. That is, we realize the
process jψ ii → jψfi ¼ cgjGi þ csS

þ
2 jGi, where Sþ2 ¼ P

j⊥
ðvdÞj⊥ jsiðj⊥;2Þhgj, with high fidelity F ≈ 1 [33]. By driving
atoms in both arrays with Rabi frequency Ω, the state
Sþ2 jGi is coupled to the opposite superposition

P
j⊥ðvdÞj⊥

σþðj⊥;2ÞjGi ¼ ð1= ffiffiffi
2

p Þðσþb − σþd ÞjGi, and we can write an

effective model, where the system is described by four
excitation modes: two local modes, with creation oper-
ators Sþ1 and Sþ2 , which represent quantum memories in
jψ ii and jψfi; and two nonlocal bright and dark modes,
with creation operators σþb and σþd , connecting the two
memories. The dynamics can then be described by a
Lindblad master equation for the density matrix of
the atoms ρ, as _ρ ¼ −i½Heff ; ρ� þ γdD½σ−d �ρþ γbD½σ−b �ρ,
where D½a�ρ≡ aρa† − ð1=2Þða†aρþ ρa†aÞ, and with an
effective Hamiltonian

Heff ¼
Ωffiffiffi
2

p ½σþb ðS−1 þ S−2 Þ þ σþd ðS−1 − S−2 Þ� þ H:c: ð4Þ

The evolution of the system is shown in Fig. 3(b),
demonstrating transfer at time t ¼ π=Ω [34]. We emphasize
that our protocol does not require tailoring the temporal
shape of exchanged photons, in contrast to deterministic
quantum state transfer protocols with “flying” photonic
qubits [13,35]. Figure 3(c) represents in red the optimal
achievable fidelity for given γd;b, which reads

F ≈ e−π
ffiffiffiffiffiffiffiffiffiffi
2γd=γb

p
; ð5Þ

showing the requirement γb ≫ γd. The blue dots represent
simulations for atomic arrays with the parameters of
Fig. 2(a), with the optimal drive given by Ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γdγb=8
p

[28]. As noted above, our treatment neglects effects of
retardation in atomic dynamics; Eq. (5) remains, however,
valid even for large delay times, although at the cost of a
slowdown of the dynamics [28].
Probing the dark state.—The existence of the dark state

can be detected in the reflection of an external laser (see
details in Ref. [28]). We consider here a weak probing field
with frequency ω0 þ Δd, propagating along z in the
Gaussian mode EðrÞ, and driving atoms prepared in the
ground state jGi. Assuming the transition frequency of
the atoms in each array is additionally detuned, by Δ for

atoms in the first array and either Δ or −Δ for the second
array, the dark and bright states are then revealed in the
width of the resonance peak of the reflectivity RðΔÞ. We
obtain R ¼ ðγb − γdÞ2=ðγ2b þ 4Δ2Þ for symmetric detuning,
and R ¼ ðγb − γdÞ2=ðγb þ 4Δ2=γdÞ2 for opposite detuning,
which both have a peak at Δ ¼ 0 [28]; the widths of these
peaks are given by γb and ∼ ffiffiffiffiffiffiffiffiffi

γdγb
p

, respectively, allowing
for a direct probing of the dark state lifetime.
Experimental considerations.—The level structure can

be implemented in neutral atoms using, for instance,
stretched states of 87Rb for jgi ¼ j5S1=2; F ¼ 2; mF ¼ 2i,
and jei ¼ j5P3=2; F ¼ 3; mF ¼ 3i, along with a strong
magnetic field to eliminate other hyperfine states from
the dynamics. The level jsi needs to be coherently coupled
to the excited state, while avoiding spontaneous decay from
jei to jsi. This could be realized, for example, using a
Rydberg state jsi ¼ jnS1=2; m ¼ 1=2i, with higher energy
[10], or another ground state jsi ¼ j5S1=2; F ¼ 1; mF ¼ 1i,
coupled to jei via a two-photon transition [36].
Alternatively, one can use for the optical transition atoms
with a J ¼ 0 → J ¼ 1 transition, e.g., 88Sr; while this
introduces three excited states with orthogonal dipole
matrix elements, our results for dark and bright state decay
rates remain qualitatively similar [28].
The atomic trap is characterized by a finite temperature

and Lamb-Dicke parameter η [37]. The resulting spread of
the atomic wave function yields a renormalization of the
decay rates as γd=b→γd=b½1−η2ð2nthþ1Þ�þγeη

2ð2nthþ1Þ
[28], where nth is the thermal occupation number of
trap states, and we assumed η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nth þ 1

p
≪ 1 and

γeη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nth þ 1

p
≪ ων, with ων the atomic motional fre-

quency. We thus need η2ð2nth þ 1Þ ≲ γd=γe. The effect
of missing atoms is similar [28]; for a defect probability
p, we find γd=b → γd=bð1 − pÞ þ γepþOðp2Þ; i.e., we
require p≲ γd=γe.
Multiple excitations.—For states with multiple excita-

tions, the dynamics can be studied again by analyzing
the spectral properties of the non-hermitian effective
Hamiltonian, which now takes the form Hdip ¼P

j;j0Hj;j0σ
þ
j σ

−
j0 [28]. Since each atom cannot be excited

more than once, the doubly excited state ðσþd Þ2jGi cannot
be an exact eigenstate of Hdip. An analytical expression for
the resulting decay rates can, however, be obtained by
treating the nonlinearity as perturbation, where each
excitation effectively acts as a defect for the other, with
the “defect” probability p identified as the inverse partici-
pation ratio p ¼ P

j⊥ jðvdÞj⊥ j4 (see Ref. [28]). In Fig. 2(a)
we show in red, for the eigenstate closest to ðσþd Þ2jGi, the
ratio of the decay rate per excitation γð2Þd and γb, which is
well captured by this analytical approximation (dashed red
curves).
For large N⊥, we thus expect γð2Þd ∼ γe=N2⊥, since

ðvdÞj⊥ ∼ 1=N⊥. Two regimes can then be explored. First,
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for γd, γ
ð2Þ
d ≪ γb the system becomes effectively almost

linear, and, in particular, the protocol for quantum state
transfer above remains valid, with the replacement

γd → γð2Þd . This can be used to transfer states with more
than one excitation, e.g., quantum error correcting states
such as cat or binomial states [38], allowing in principle to

reach fidelities beyond Eq. (5). Second, if γd ≪ γð2Þd , γb,
excitations of radiating two-excitation states can be adia-
batically eliminated, exploiting again the quantum Zeno
effect. This mechanism can be used to effectively block the
transfer from the memories to the dark state, and thereby
can operate as a controlled-phase gate [39]. Moreover, by
the same principle, weakly driving the optical transition of
atoms in one of the arrays generates Rabi oscillations
between jGi and σþd jGi as a two-level system, which can
also be used to prepare the system in the dark state, e.g., for
entanglement generation between memories, or as single-
photon source.
Conclusion.—We have shown that distant single-layered

arrays of two-level atoms can support subradiant (long-
lived) states as collective excitations in the form of Bell
superpositions. Our setup constitutes a building block for a
modular quantum architecture, where quantum informa-
tion, stored and processed in atomic arrays, is exchanged
via dark modes. Moreover, the separation between arrays
can be drastically increased by adding lenses or optical
fibers to mediate photons between the arrays, although at
the cost of adding decoherence channels. While we dis-
cussed here implementations with atoms in optical lattices,
our results remain valid for other types of emitters,
including, for instance, in solid-state platforms such as
color centers in diamond [40], quantum dots [41], or
monolayers of transition metal dichalcogenides [42].
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