
 

Pair-Breaking Collective Branch in BCS Superconductors and Superfluid Fermi Gases

H. Kurkjian, S. N. Klimin, and J. Tempere
Theory of Quantum Complex Systems, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium

Y. Castin
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We demonstrate the existence of a collective excitation branch in the pair-breaking continuum of
superfluid Fermi gases and BCS superconductors. At zero temperature, we analytically continue the
equation on the collective mode energy in Anderson’s Random Phase Approximation or Gaussian
fluctuations through its branch cut associated with the continuum, and obtain the full complex dispersion
relation, including in the strong coupling regime. The branch exists as long as the chemical potential μ is
positive and the wave number below

ffiffiffiffiffiffiffiffiffi
2mμ

p
=ℏ (withm the fermion mass). In the long wavelength limit, the

branch varies quadratically with the wave number, with a complex effective mass that we compute
analytically for an arbitrary interaction strength.
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Introduction.—Systems with a macroscopic coherence
between pairs of fermions exhibit in their excitation
spectrum a pair-breaking continuum, whose energy is
greater than twice the order-parameter Δ. This is particu-
larly the case of superconductors and cold gases of spin-
1=2 fermionic atoms. The collective behavior of the neutral
gases at energies below 2Δ is known: it is characterized by
a bosonic excitation branch of phononic start [1]. The
dispersion relation of this branch was calculated [2,3] and
its existence experimentally confirmed [4–6].
Conversely, the existence of a collective mode inside the

pair-breaking continuum remains a debated question that
attracts much interest because of an analogy often sug-
gested with Higgs modes in field theory [7]. The challenge
is to understand whether the response of the continuum to
an excitation is flat in frequency or presents a nontrivial
structure like a resonance. We identify two major short-
comings in the existing theoretical treatment [8–12]: (i) it
neglects the coupling between the amplitude and phase of
the order-parameter, which restricts it to the weak coupling
regime, (ii) it is limited to long wavelengths. These short-
comings are prejudicial as they maintain doubts about the
very existence of this second collective mode [13], notably
at zero wave vector [14].
Here, we clarify the description of the pair-breaking

collective modes. By analytically continuing the pair
propagator, we reveal a pole below the branch cut asso-
ciated with the continuum, for positive chemical potential
μ > 0 and nonzero wave number only. We obtain the full
dispersion relation of this mode completely accounting for
amplitude-phase coupling. This allows us to deal with
the strong coupling regime. Remarkably, the real part of the
branch is wholly below 2Δ when Δ > 1.210μ (yet the

branch remains separated from the band gap ½0; 2Δ� on the
real axis by a branch cut). In the weak coupling and long
wavelength limit, we agree with the result of [10] but
disagree sharply with the prediction commonly accepted in
the literature [12], notably for the damping rate that, we
find, has a quadratic start at low wave number, rather than a
linear one. All our predictions are based on Anderson’s
random phase approximation (RPA) or Gaussian approxi-
mation for contact interactions. This theory describes
qualitatively well both cold Fermi gases in the BEC-
BCS crossover and BCS superconductors [Coulomb inter-
action has no effect on amplitude modes at frequencies
OðΔ=ℏÞ [10]], and is a prerequisite for any more realistic
description of interactions.
The branchwe find describes the collective behavior of the

pairs following an excitation of their internal degrees of
freedom; its frequency is thus not simply the continuum
threshold 2Δ=ℏ, as for the “Higgs oscillations” predicted and
observed [14–23] at zero wave vector. It is observable in
superfluid Fermi gases as a broadened peak at energies above
2Δ in the order-parameter-amplitude response function.
Fluctuations of the order parameter.—We consider a

homogeneous system of spin-1=2 fermions of mass m and
chemical potential μ, with contact interactions. At zero
temperature, the fluctuations of the order-parameterΔ around
its equilibrium value admit eigenmodes: the collective modes
of the system. Expanding to second order in amplitude δλ and
phase δθ fluctuations yields the Gaussian action [24,25]

S ¼ S0 þ
Z

dω
Z

d3qð−iΔδθ� δλ� ÞMðω;qÞ
�
iΔδθ
δλ

�
:

ð1Þ
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The symmetric fluctuation matrix M gives access to
the propagator of Δ through a mere inversion. The equation
on the collective mode energy zq with wave vector q is
then

detMðzq;qÞ ¼ 0: ð2Þ

Since the order-parameter Δ describes pair condensation,
the coefficients of its fluctuation matrix contain an integral
over the internal wave vector k of the pairs, involving ξk ¼
ℏ2k2=2m − μ and Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ Δ2

p
, the dispersion rela-

tions of free fermions and BCS quasiparticles respectively,
as well as the energy Ekq ¼ Ekþq=2 þ Ek−q=2 of a pair of
quasiparticles of total wave vector q:

M��ðz;qÞ ¼
Z

d3k
2

�ðW�
kqÞ2

z − Ekq
−

ðW�
kqÞ2

zþ Ekq
þ 1

Ek

�
; ð3Þ

Mþ−ðz;qÞ ¼
Z

d3k
2

Wþ
kqW

−
kq

�
1

z − Ekq
þ 1

zþ Ekq

�
; ð4Þ

where the indices þ and − refer to phase and ampli-
tude fluctuations and we introduce the notation ðW�

kqÞ2 ¼
ðEkþq=2Ek−q=2 þ ξkþq=2ξk−q=2 � Δ2Þ=ð2Ekþq=2Ek−q=2Þ
[26]. Equations (2)–(4) are found also with RPA [1,27,28],
diagrammatic resummations [3] or linearized time-
dependent BCS equations [29].
Since Eq. (2) is invariant under the change of z to −z, we

impose Re z ≥ 0. The matrix M then has a branch cut for
z ∈ Cq ¼ fEkq;k ∈ R3g, originating in the denominator
z − Ekq in Eqs. (3)–(4). As such, Eq. (2) has at most one
solution for fixed q: it is real, below the continuum, and
corresponds to the bosonic Anderson-Bogoliubov branch
[3]. Conversely, the collective modes we want to character-
ize are inside the continuum, that is, a priori for
Re zq > min Cq. As in the textbook problem of one atom
coupled to the electromagnetic field [30], the correct way to
solve Eq. (2) in the presence of the continuum is to
analytically continue the matrix M through its branch
cut [8]. This is an opportunity to recall the procedure
of Nozières [31] to analytically continue a function of the
form

fðzÞ ¼
Z þ∞

−∞
dω

ρðωÞ
z − ω

; ð5Þ

analytic for Im z ≠ 0, but exhibiting a branch cut on the real
axis, wherever the spectral density ρ is nonzero. The
nonanalytic contribution to Mσσ0 , with σ; σ0 ¼ �, is natu-
rally cast into this form with the spectral densities

ρσσ0 ðω;qÞ ¼
Z

d3k
2

Wσ
kqW

σ0
kqδðℏω − EkqÞ ð6Þ

The analytic continuation of f from the upper to lower half-
plane, through an interval ½ω1;ω2� of the branch cut where
ρ is analytic, is simply

f↓ðzÞ ¼
�
fðzÞ if Im z > 0

fðzÞ − 2iπρðzÞ if Im z ≤ 0;
ð7Þ

where ρðzÞ is the analytic continuation of ρ for Im z ≠ 0.
This is readily demonstrated by writing ρðωÞ ¼ ½ρðωÞ −
ρðzÞ� þ ρðzÞ in Eq. (5) with an energy cutoff.
To carry out the analytic continuation ofM, we study the

function ω ↦ ρσσ0 on the real axis, and search for singu-
larities. For that, we integrate over k in Eq. (6) in a
spherical frame of axis q and use the Dirac-δ to perform the
angular integration over u ¼ k · q=kq. The remaining
integral over k is restricted to a domain represented on
Fig. 1, whose form depends on ω. When μ > 0, the BCS
excitation branch has its minimum in k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mμ=ℏ2

p
;

then, for q > 0 small enough [32] the function ω ↦ ρσσ0
has three angular points related to a configuration change of
the integration domain, which divides the real axis in four
distinct sectors (see Fig. 1): (i) for ω < ω1 ¼ 2Δ=ℏ, the
resonance condition ℏω ¼ Ekq is never satisfied, so that
ρσσ0 ðω < ω1Þ ¼ 0, (ii) for ω1 < ω < ω2 it is reached on an
interval ½k1; k2�, (iii) for ω2 < ω < ω3, it occurs on disjoint
intervals ½k1; k01� and ½k02; k2�, and (iv) for ω > ω3, it occurs
again on an interval ½k02; k2�.
Numerical study at arbitrary q.—We find a solution

zq ¼ ℏωq − iℏΓq=2 to Eq. (2) in the analytic continuation
through the sector ½ω1;ω2� (see the schematic on Fig. 2),
which we identify as the energy of the sought collective

FIG. 1. Left: As a function of k, the interval between minu Ekq
(reached for u ¼ 0, solid line) and maxu Ekq (reached for
u ¼ �1, dashed line) determines an energy band (gray area)
in which the resonance ℏω ¼ Ekq occurs for at least one value of

u ¼ cosðdk;qÞ in ½−1; 1�. For fixed ω, the integration interval
over k in Eq. (6) is read horizontally; as a function of ω, its
structure undergoes 3 transitions in ω1, ω2, and ω3, which results
in angular points in the spectral density. Right: Example of
ρ−− (solid line). Here, μ=Δ ¼ 1 and ℏq=

ffiffiffiffiffiffiffiffiffiffi
2mΔ

p ¼ 0.5.
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mode. In this sector, we express the spectral functions in
terms of first and second kind complete elliptic inte-
grals [33].
The dispersion relation q ↦ ωq is represented on

Fig. 3 for pairing strengths μ=Δ ¼ 1=10, 5, and 100
(1=kFa ≃ 0.5, −1.1 and −3.0 in Fermi gases with Fermi
wave number kF and scattering length a). Departing
quadratically from its limit 2Δ in q ¼ 0, the branch goes
through a maximum of height proportional to Δ and
location of order the inverse of the pair radius ξ ≈
ℏ2k0=mΔ at weak coupling Δ ≪ μ, then dips below 2Δ.
In the strong coupling regime Δ > μ, the domain where the
energy of the branch is greater than 2Δ shrinks, until its
disappearance for μ=Δ ≃ 0.8267. Conversely, the damping
rate Γq is a strictly increasing function of q, also starting
quadratically from its zero limit in q ¼ 0. This is in direct
contrast with the commonly accepted prediction in the
literature of a damping rate linear in q [12]. The fact that
our solution travels far away from the initial branch cut
underlines the nonperturbative nature of our analytic
continuation: there is no unperturbed solution on the real

axis from which Im zq could be deduced from Fermi’s
golden rule.
The branch disappears in q ¼ 2k0 (hence before the

Bogoliubov-Anderson branch hits the continuum [3]) when
the interval ½ω1;ω2� through which our analytic continu-
ation passes reduces to a point. Last, we exclude the
existence of a branch of energy above 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ2

p
(twice

the gap) in the BEC regime where μ < 0 and where the
three singularities ωi of ρσσ0 gather.
Long wavelength limit.—In this limit, we obtain several

analytical results that corroborate our numerical study. We
deal separately with the singular case q ¼ 0, where the
matrix Mðz;q ¼ 0Þ is expressible in terms of the complete
elliptic integrals of the first and third kind KðkÞ andΠðn; kÞ
[34,35]:

thsM̃þþðz; 0Þ ¼
M̃−−ðz; 0Þ

ths
¼ −πð2elÞ1=2½FðsÞ − Fð−sÞ�;

M̃þ−ðz; 0Þ ¼ −πð2elÞ1=2½FðsÞ þ Fð−sÞ�; ð8Þ
with l ¼ argshðμ=ΔÞ, s ¼ argchðz=2ΔÞ, and

FðsÞ ¼ ðshlþ shsÞ½Πðelþs; ielÞ
− Πð−el−s; ielÞ� þ KðielÞchs: ð9Þ

Equation (2) then reads simply FðsÞFð−sÞ ¼ 0. Even
after analytic continuation [36] this equation has no
solution besides s ¼ iπ=2 (z ¼ 0, the starting point of
the Anderson-Bogoliubov branch); in particular, FðsÞ
has a finite nonzero limit when z → 2Δ (s → 0) with
Im s > 0. Thus, the threshold of the pair-breaking con-
tinuum ω ¼ 2Δ=ℏ is not a solution of the RPA equation (2)
in q ¼ 0 [37], and not a pole of the response functions. This
is why, as understood by Refs. [9,14–18], the “Higgs”
oscillations at this frequency are not sinusoidal as
cosð2Δt=ℏþ ϕÞ but subject to a power-law damping as
cosð2Δt=ℏþ ϕÞ=tα, α > 0.
For small but nonzero q, and μ > 0, the resonance sector

between ℏω1 ¼ 2Δ and ℏω2 ¼ 2Δþ μℏ2q2=2mΔþ
Oðq4Þ in Fig. 1 has a width Oðq2Þ in energy, and OðqÞ
in the wave number k around the minimum location k0 of
the BCS branch. We then set

zq ¼ 2Δþ ζ
ℏ2q2

4m� þOðq3Þ and k ¼ k0 þ Kq; ð10Þ

with m� ¼ mΔ=2μ the effective mass of the BCS branch
minimum. We thus focus on the wave vector domain where
the denominator in Eqs. (3), (4) is of order q2:

z − Ekq ¼ z − 2Δ −
ℏ2q2

m� ðK2 þ u2=4Þ þOðq3Þ: ð11Þ

Now, using the expansions of the numerator amplitudes
Wþ

kq ∼ 1 and W−
kq ∼ ℏ2k0qK=mΔ, and performing the

FIG. 2. Trajectories of the pair-breaking collective branch (blue
curve) and Bogoliubov-Anderson branch (green line) as func-
tions of q in the complex plane. The first one is revealed only after
analytic continuation, hence the deformed branch cut (striped red
lines) in the lower half-plane.

FIG. 3. Frequency (top) and damping rate (bottom) of the pair-
breaking collective mode as functions of q for μ=Δ ¼ 100 (black
solid curve), μ=Δ ¼ 5 (red solid curve), and μ=Δ ¼ 0.1 (blue
solid curve, disappears in 2k0ξ ≃ 0.51) as functions of q in units
of the inverse pair size ξ [2]. Dashed curves: the same for
μ=Δ ¼ 100, omitting the amplitude-phase couplingMþ−. Dotted
curves: low-q quadratic behavior obtained analytically from
Eqs. (10)–(14).
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integration over the angular variable u before that over K
we obtain the analytic expressions for Im z > 0:

M̃þþðz;qÞ ∼
q→0

−
iπ2ð2mΔÞ1=2

ℏq
asin

1ffiffiffi
ζ

p ; ð12Þ

M̃−−ðz;qÞ ∼
q→0

−
iπ2μℏq

ð8mΔ3Þ1=2
� ffiffiffiffiffiffiffiffiffiffiffi

ζ − 1
p

þ ζasin
1ffiffiffi
ζ

p
�
: ð13Þ

Since the divergence of Mþþ of order 1=q is compensated
by the suppression of M−− linear in q, the finite nonzero
limit (8) of Mþ− in q ¼ 0;ℏω ¼ 2Δ suffices. Inserting
expressions (8), (12), (13) in the RPA equation (2) and
analytically continuing the product MþþM−− through its
branch cut [0, 1] in ζ (corresponding to the segment
½ℏω1;ℏω2� in z) with the substitutions asin 1=

ffiffiffi
ζ

p
→ π −

asin 1=
ffiffiffi
ζ

p
and

ffiffiffiffiffiffiffiffiffiffiffi
ζ − 1

p
→ −

ffiffiffiffiffiffiffiffiffiffiffi
ζ − 1

p
, we obtain an explicit

yet transcendental equation on ζ:�
π − asin

1ffiffiffi
ζ

p
���

π − asin
1ffiffiffi
ζ

p
�
ζ −

ffiffiffiffiffiffiffiffiffiffiffi
ζ − 1

p �

þ 2

π4μ

�
ℏ2

2m

�
3

M2þ−ð2Δ; 0Þ ¼ 0: ð14Þ

The continuation is for the entire lower half-plane, includ-
ing Re z < 2Δ (Re ζ < 0). The unique solution of Eq. (14)
shown in Fig. 4 faithfully reproduces the coefficient of q2 in
Fig. 3. The real part changes sign for μ=Δ ≃ 0.8267, which
confirms that the branch is below 2Δ at strong coupling.
To understand the disappearance of the branch at q ¼ 0,

we calculate the matrix residue of the analytically con-
tinued propagatorM↓ðz;qÞ−1 at zq and find that it vanishes
linearly: it becomes proportional to the amplitude-channel
projector ð0

0
0
1
Þ with a factor

Zq ∼
q→0

iℏ4q
2m2π2

π − asin 1ffiffi
ζ

p

ðπ − asin 1ffiffi
ζ

p Þ2 þ
ðπ−asin 1ffiffi

ζ
p Þζ− ffiffiffiffiffiffi

ζ−1
p

2ζ
ffiffiffiffiffiffi
ζ−1

p
: ð15Þ

This results from applying ðd=dzÞ ∝ q−2ðd=dζÞ to
Eqs. (12), (13). Zq is the weight of the collective mode
above the continuum background; its suppression in q ¼ 0
means that the many-body response function can no longer
be interpreted in terms of a quasiparticle on an incoherent
background.
At weak coupling (μ=Δ → þ∞), Mþ− tends to zero

because of the antisymmetry k ↔ 2k0 − k about the Fermi
surface, valid for ðk − k0Þξ ¼ Oð1Þ. The RPA equation
reduces toMþþM−− ¼ 0 for qξ ¼ Oð1Þ, and Eq. (14) to its
ζ-dependent first line. While the phononic phase mode
solves Mþþ ¼ 0, the pair-breaking collective mode is then
a pure amplitude mode (a root of M↓−−) [38]. Its quadratic
dispersion relation,

zq ≃
q→0

μ=Δ→þ∞
2Δþð0.2369 − 0.2956iÞℏ

2q2

4m� ð16Þ

contradicts Ref. [12] (even Re ζ differs from the value 1=3
of Ref. [12]), but confirms Ref. [10].
Our calculation shows the limits of the analogy with

Higgs modes in field theory: although it is also a gapped
amplitude mode at weak coupling, the collective mode,
here immersed in a continuum, is obtained only after a
nonperturbative treatment of the coupling to fermionic
degrees of freedom; impossible therefore to obtain it
reliably from a low-energy (ℏω ≪ 2Δ) effective action
as suggested sometimes [7,39].
Observability in response functions.—At low q, the pair-

breaking collective mode is weakly damped, a favorable
condition. At weak coupling, as shown in Fig. 5, there
indeed appears in the response function of the order-
parameter amplitude a smooth peak, whose position, width,
and height are remarkably predicted by the branch obtained
in the analytic continuation. At strong enough coupling
[blue curve in Fig. 5(b)], the smooth resonance peak
disappears and there remains a sharp one (with a vertical
tangent), whose maximum is at ω ¼ 2Δ=ℏ even for q ≠ 0.
Qualitatively, this indicates that the collective frequency ωq

is below 2Δ=ℏ such that there is no complex resonance in
the interval ½2Δ=ℏ;ω2� where our analytic continuation is
meaningful.
The amplitude response function [jMþþ=

detMðωþ i0þ;qÞj2, or 1=jM−−ðωþ i0þ;qÞj2 at weak
coupling], unlike the more commonly measured density-
density response [6], is sensitive to the pair-breaking
collective mode even at weak coupling. In cold gases,
the order-parameter amplitude can be excited by Feshbach
modulation of the interaction strength, and measured by
spatially resolved interferometry [40]. Physically, Fig. 5
shows that the system absorbs energy from modulations of

FIG. 4. Real and imaginary parts (black and red
solid curves) of the dimensionless coefficient ζ of q2 in
the energy zq of the pair-breaking collective mode as
functions of μ=Δ. Dashed curves: weak coupling expansion
ζ ¼ ζ0 − ½2ζ20=ðζ0 − 1Þ�ðΔ=πμÞ2ln2ðΔ=8μeÞ þ � � � with ζ0≃
0.2369 − 0.2956i. Inset: rescaled coefficient ζ̃ ¼ ζμ=Δ ¼
ζm=2m� admitting the finite real limit ζ̃∞ ¼ −16K2ðiÞ=π4 ≃
−0.2823 at strong coupling μ=Δ → 0þ, its imaginary part
tending to zero like −12KðiÞðμ=ΔÞ1=2=π3.
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the pairing strength jΔj at frequencies ω > 2Δ=ℏ more
efficientlywhenω is close toωq. This resonance is broadened
because the absorbed energy is dissipated by breaking pairs
into unpaired fermions of wave vectors q=2� k.
Conclusion.—We have established on solid theoretical

foundations the existence of a collective branch inside the
pair-breaking continuum of BCS superconductors and
superfluid Fermi gases, and we have fully characterized
its dispersion relation and damping rate, including in the
strong coupling regime where it is a mixture of amplitude
and phase fluctuations. We thus give a complete answer to
an old condensed-matter problem. The branch appears
clearly in the order-parameter response function which
can be measured in cold atomic gases.
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