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The recently developed effective field theory of fluctuations around thermal equilibrium is used to
compute late-time correlation functions of conserved densities. Specializing to systems with a single
conservation law, we find that the diffusive pole is shifted in the presence of nonlinear hydrodynamic
self-interactions, and that the density-density Green’s function acquires a branch point halfway to the
diffusive pole, at frequency ω ¼ −ði=2ÞDk2. We discuss the relevance of diffusive fluctuations for strongly
correlated transport in condensed matter and cold atomic systems.
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Introduction.—Diffusion was invented by Fourier to
describe the dynamics of heat [1]. Heat or energy transport
is ubiquitous and of relevance to essentially any physical
system at nonzero temperature. In modern parlance, dif-
fusion is understood more generally as the universal late-
time hydrodynamic description of systems governed by a
single conservation law, barring spontaneously broken
symmetries. The diffusion constant may itself depend on
the background value of the quantity that is being trans-
ported. Classically, this results in the diffusion equation
being augmented to a nonlinear differential equation and
can lead to rich phenomena (see, e.g., [2]), in analogy with
turbulence in the Navier-Stokes equation. At the quantum
or statistical physics level, the consequence of these non-
linearities is that the effective theory of hydrodynamic
fluctuations is interacting.
The traditional approach to address this class of prob-

lems is to couple the degrees of freedom (d.o.f.) of interest
to stochastic noise fields and solve perturbatively a non-
linear Langevin equation [3,4]. This approach is also
familiar in the context of the Kardar-Parisi-Zhang equation
[5]. These methods have revealed striking effects in hydro-
dynamics such as longtime tails [4,6–8] and potentially
large renormalizations of transport parameters [9,10].
However, where standard classical hydrodynamic stood
on firm symmetry principles [11], the physical principles
governing stochastic hydrodynamics—in particular how
“noise” fields interact with conserved densities—were less
transparent. This was remedied recently by a decade-long
effort culminating in a first principles construction of the
general effective field theory of hydrodynamic fluctuations

about a thermal equilibrium state [12–16]; see [17] for a
recent review.
Another motivation for a systematic study of hydro-

dynamic fluctuations is thermalization. The local thermal-
ization (or equilibration) time τth is loosely defined as the
time it takes a system to reach local thermodynamic
equilibrium. At times t > τth, hydrodynamics governs
the slower relaxation to global thermodynamic equilibrium.
It is tempting to identify the thermalization time with
the exponential decay of nonhydrodynamic correlators
hOðtÞOi ∼ e−t=τth . Such correlators are, however, sensitive
in general to hydrodynamic longtime tails and therefore
strictly do not decay exponentially [4,7]. A better under-
standing of longtime tails may therefore help provide
a sharp definition of τth. See, e.g., [18,19] for recent
alternative approaches to τth.
In the following, we use the general formalism of

Ref. [15] to uncover the universal structure of late-time
response functions for interacting systems with a single
continuous symmetry, focusing on time translation invari-
ance (and therefore heat transport) for concreteness. We
find that the thermal dc conductivity and diffusion constant
both receive independent nonvanishing radiative correc-
tions, even in the case of a single conserved density, and
that the correction is not sign definite. Both of these
statements are different to the results obtained from a
traditional approach [10], for reasons we shall explain.
Moreover, we compute the one-loop retarded Green’s
function GR

εεðω; kÞ at finite frequency and wave vector,
revealing its analytic structure. We conclude by discussing
experimental signatures of hydrodynamic fluctuations with
applications to insulators, bad metals, and cold atoms.
Formalism.—Our objective is to understand the structure

of energy density correlation functions in nonintegrable
quantum systems at nonzero temperature

hεðt; xÞεðt0; x0Þ � � �iβ ≡ Tr½ρβεðt; xÞεðt0; x0Þ � � ��; ð1Þ
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where the thermal density matrix ρβ ¼ e−βH=Tre−βH. Here,
we will be interested in the case where energy is the only
conserved quantity. The systematic study of a single
diffusive charge was initiated in Ref. [15]. In that formal-
ism, furthermore, the contribution of ghosts (or lack
thereof) has been well understood [20]. A self-contained
review of the formalism with a single conserved charge is
given in the Supplemental Material [21]. The output of this
method is an effective field theory that provides a pertur-
bative expansion for computing the correlators (1):

Z ¼
Z

DεDφae
i
R

L½ε;φa�: ð2Þ

Here, ε is the energy density and φa is an auxiliary field (the
a subscript is not an index). The most general Lagrangian
to cubic order in fields was constructed in Ref. [15]. In the
Supplemental Material [21] we extend their construction
to quartic interactions, which will play a role below. The
resulting Lagrangian to leading order in derivatives that is
at most quartic in fields is given by

L ¼ iT2κð∇φaÞ2 − φað_ε −D∇2εÞ

þ∇2φa

�
λ

2
ε2 þ λ0

3
ε3
�
þ icT2ð∇φaÞ2ðλ̃εþ λ̃0ε2Þ

þ � � � ; ð3Þ

where T is the temperature, D the diffusivity, c the specific
heat, and κ ¼ cD the thermal conductivity. These are all
“bare” values that will be renormalized by the interactions
in (3). The couplings λ; λ0; λ̃; λ̃0 themselves can be written as
linear combinations of the following derivatives of the
transport parameters:

T∂Tκ; T2∂2
Tκ; T∂TD; T2∂2

TD: ð4Þ

Their explicit expressions are given in the Supplemental
Material [21].
The traditional stochastic approach to hydrodynamic

fluctuations with Gaussian noise [3–5,7] can be recovered
from the general effective action (3) when the interactions
that are quadratic in auxiliary fields (i.e., the λ̃ and λ̃0 terms)
are absent, by performing a Legendre transform and
introducing the noise field ξ ¼ ∂L=∂φa [15]. However,
when λ̃ or λ̃0 is nonvanishing, the resulting theory will
contain interactions of the form ξ2ε or ξ2ε2. The noise
correlations will therefore not be strictly Gaussian because
they now depend on energy fluctuations [28].
In the remainder we will show precisely how the

interactions in (3) lead to nonanalyticities in response
functions and renormalize the transport parameters them-
selves [6,8,9,29]. Concretely, we are interested in the one-
loop correction to the retarded Green’s function, which is
simply diffusive in the absence of interactions

GR;0
εε ðω; kÞ ¼ iκTk2

ωþ iDk2
: ð5Þ

The diagrams contributing at one loop are shown in Fig. 1,
and computed in the Supplemental Material [21]. These
loops are all UV divergent and should be truncated at the
hydrodynamic cutoff kmax ¼ 2π=lth, which defines the
thermalization length lth. Perturbation theory is controlled
because all couplings in the Lagrangian (3) are power
counting irrelevant, and therefore have small effects at low,
hydrodynamic energy scales. Indeed, the appropriate
dimensional analysis is set by the diffusive pole in (5),
so that ½ω� ¼ 2½k� and ½D� ¼ 0. It follows that ½ϕa� ¼ ½ε� ¼
ðd=2Þ½k� and hence the cubic couplings ½λ� ¼ ½λ̃� ¼
−ðd=2Þ½k� are irrelevant. These dimensions suggest that
the one-loop corrections to tree-level diffusion, which are
quadratic in coupling, will be of the schematic form
Dk2ð1þ λ2kdÞ, as we verify below.
Results.—The diagrams shown in Fig. 1 sum up to give

the one-loop retarded Green’s function

GR
εεðω; kÞ ¼

i½κ þ δκðω; kÞ�Tk2
ωþ iDk2 þ Σðω; kÞ ; ð6Þ

where both δκðω; kÞ and Σðω; kÞ receive analytic and
nonanalytic contributions. Separating these contributions
as

δκðω; kÞ ¼ δκ þ κ⋆ðω; kÞ;
Σðω; kÞ ¼ iδDk2 þ Σ⋆ðω; kÞ; ð7Þ

one finds that the analytic pieces have the form

δκ

κ
¼ fd

cld
th

λκ;
δD
D

¼ fd
cld

th

λD; ð8Þ

with fd ¼ VolðBdÞ ¼ 2, π, 4π=3 for spatial dimensions
d ¼ 1, 2, 3, and where λκ, λD are dimensionless effective
couplings. Their explicit form will be given below. The
nonanalytic parts of (7) have the form

FIG. 1. The one-loop diagrams contributing to Gεε. Solid lines
denote the energy density field ε and squiggly lines denote the
auxiliary field φa.

PHYSICAL REVIEW LETTERS 122, 091602 (2019)

091602-2



κ⋆ðω; kÞ ¼ fκðω; kÞαdðω; kÞ;
Σ⋆ðω; kÞ ¼ k2fΣðω; kÞαdðω; kÞ; ð9Þ

where fκ, fΣ are analytic functions, shown below, that do
not depend on dimension, and the nonanalyticity is

α1ðω; kÞ ¼
1

4

�
k2 −

2iω
D

�
−1=2

; ðd ¼ 1Þ ð10aÞ

α2ðω; kÞ ¼ −
1

16π
log

�
k2 −

2iω
D

�
; ðd ¼ 2Þ ð10bÞ

α3ðω; kÞ ¼ −
1

32π

�
k2 −

2iω
D

�
1=2

: ðd ¼ 3Þ ð10cÞ

The effect of these nonanalyticities is suppressed by powers
of momenta and frequency appearing in fκ, fΣ, as we will
see below.
The retarded Green’s function is analytic in the upper-

half frequency plane, as required by causality. The inter-
actions have induced a branch point at ω ¼ −ði=2ÞDk2.
Moreover, the diffusive pole is split into two poles with
small real parts ω ¼ −iðDþ δDÞk2 �Oðk2jkjdÞ [30]. The
location of the branch point can be understood from simple
kinematics, by putting both internal legs on-shell (in either
the retarded or advanced Green’s functions) as in Fig. 2.
The frequencies ω for which the on-shell condition is
satisfied form a half-line in the complex plane parametrized
by the loop momentum k0, where the Green’s function has a
branch cut. The branch point is located at the smallest
frequency ω (in magnitude) that can satisfy the on-shell
conditions:

ω⋆ ¼ −iDmin
k0

½k2 þ 2k ⋅ k0 þ 2k02� ¼ −
i
2
Dk2: ð11Þ

In previous treatments, similar physics to what we have
just described was found in the coupled diffusion of two
modes [8,10]. Because of the absence of a systematic

formalism for hydrodynamic fluctuations at that time, those
works did not account—among other things—for inter-
actions that are quadratic in the auxiliary field (in particular
λ̃), nor the quartic terms λ0 and λ̃0. While the systematic
approach modifies the results for two coupled modes, see
Supplemental Material [21], the most qualitative difference
is seen for diffusion of a single conserved density. We have
found that renormalization of the diffusion constant and
conductivity occurs even in this case, controlled by the
effective couplings in (8)

λκ ¼
c2T2

D
λ̃0; λD ¼ −

c2T2

2D2
½λðλþ λ̃Þ þ 2λ0D�; ð12Þ

which are not sign-definite in general.
Furthermore, we have also found nonanalytic corrections

to the Green’s function even with a single diffusing mode.
These are not as strong as those arising with two modes,
as we now explain. The functions fκ, fΣ appearing in the
nonanalytic contributions (9) are

fκðω; kÞ ¼
cT2

D2
k2λλ̃;

fΣðω; kÞ ¼
cT2

D2
½ωλðλþ λ̃Þ þ iDk2λλ̃�: ð13Þ

While fΣ has both the OðωÞ and Oðk2Þ terms expected at
this order in the derivative expansion, fκ only has anOðk2Þ
term. The subsequent suppression of fκ as k → 0 implies
that the optical conductivity does not receive nonanalytic
corrections, and is instead constant in the hydrodynamic
regime

TκðωÞ≡ lim
k→0

ω

k2
ImGR

εεðω; kÞ ¼ Tðκ þ δκÞ: ð14Þ

This result can be contrasted with the case of two
interacting diffusive densities, wherein the optical conduc-
tivity receives a nonanalytic fluctuation correction [6,8].
We revisit this case in the Supplemental Material [21],
where the analytic structure is discussed in the light of a
systematic inclusion of fluctuation effects. We find a
nonanalytic correction to the optical conductivity of the
form (we use σ to denote a generic conductivity)

δσðω; kÞ ∼ ωαdðω; kÞ þ � � � ; ð15Þ
where αd is as in (10) and � � � denote terms that are
further k2 suppressed. In particular, the correction in d ¼ 2
is δσðωÞ ∼ ω logω.
Discussion and applications.—Strong renormalization

of the transport parameters due to hydrodynamic fluctua-
tions occurs if the ratios in (8) are large. When the
dimensionless couplings are order unity, λκ ∼ λD ∼ 1
[31], the strength of fluctuations is controlled by the
specific heat per “thermal volume” cld

th. This quantity
can be thought of as the number of d.o.f. in the smallest

FIG. 2. On-shell condition for the two internal legs (left), and
analytic structure of the retarded Green’s function GR

εεðω; kÞ at
one loop (right). In imposing the on-shell condition, it is
important to consider two poles in opposite halves of the complex
ω0 plane, otherwise the loop contribution vanishes. The pole in
the upper half plane arises from an advanced Green’s function in
the loop: GA ¼ ðGRÞ�.
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volume that can reach local thermodynamic equilibrium.
When there are many d.o.f. in a thermal volume, fluctuation
effects are small. One might further expect that a sufficient
number of d.o.f. are necessary in order for a region to
locally thermalize, and hence cld

th ≳ 1. Indeed, such a
bound has been established in the presence of operators
with microscopic positivity properties, using the eigenstate
thermalization hypothesis [32,33]. Thus, hydrodynamic
fluctuation corrections to thermal transport parameters
are expected to be at most comparable to the bare values.
If microscopic interactions are weak then lth ∼ lmfp, the

(inelastic) quasiparticle mean free path, will be large.
Fluctuation corrections to transport are therefore small in
weakly interacting systems. In contrast, in strongly corre-
lated systems lth can become very short and fluctuations
may be important. For example, at high temperatures in a
lattice model, with order one d.o.f. per unit cell, the bound
mentioned above is only saturated when lth ∼ a, the lattice
spacing. This roughly coincides with the “minimal” mean
free path for thermal transport by well-defined phonons in
insulators [34,35]. In strongly correlated regimes, however,
the notion of a mean free path is likely not a useful concept.
Recent measurements of thermal diffusivity in cuprates
[36,37] and perovskites [38–40] suggest (assuming that
the microscopic sound speed is the relevant velocity) that a
transport length scale reaches and possibly surpasses the
lattice spacing at high temperatures. The specific heat in
these materials is roughly ca2 ∼ 40 and ca3 ∼ 15, respec-
tively. Itmay be interesting to look for signatures of diffusive
fluctuations in the thermal transport of these systems.
Fluctuation effects can also become important for trans-

port close to a thermal phase transition. The thermalization
length diverges as lth ∼ τ−ν as the reduced temperature
τ → 0, while the specific heat scales as c ∼ τ2−α. It follows
that δD=D ∼ ταþdν−2 ∼ 1 if hyperscaling is obeyed, so
fluctuations are important in that case. Above the upper
critical dimension hyperscaling is violated and fluctuations
are small. A more sophisticated discussion must include
fluctuations of the order parameter in the analysis [41].
Transport length scales approaching or exceeding the

lattice spacing are also seen in “bad metals” [42–44]. All of
our expressions above are easily adapted to describe the
diffusion of a single conserved Uð1Þ charge, instead of heat
[45]. Particle-hole symmetry should be broken, typically by
a background charge density, otherwise many terms we
have considered are forced to be zero. The correction to the
dc electrical conductivity σ, e.g., is found to be

δσ

σ
¼ fd

ld
th

T
χμ2

λσ: ð16Þ

Here, χ is the charge susceptibility and μ the chemical
potential. In the definition of the couplings in (3) in terms of
the thermodynamic derivatives (4), one replaces T → μ.

Condensed matter systems—including most bad
metals—are typically at degenerate temperatures T <
EF, below the Fermi energy. At these temperatures
χ ∼ kdF=EF and μ ∼ EF. Here, kF is the Fermi momentum.
The contribution (16) of fluctuations to the conductivity is
therefore small, even when the thermalization length
becomes of order lth ∼ a ∼ 1=kF. This is the shortest
length consistent with local thermalization [33]. In contrast,
at high temperatures where fermions are nondegenerate,
χ ∼ 1=ðTadÞ. If the total charge is held fixed, then μ ∼ T.
It follows that as the thermalization length becomes short,
of order lth ∼ a, fluctuation corrections to the conductivity
are order one. Diffusive transport by strongly correlated but
nondegenerate fermions has recently been probed in an
ultracold atom realization of the Hubbard model [46], and
earlier in, e.g., [47], as well as in numerics [48,49]. Indeed,
lth is found to saturate around the lattice scale at high
temperatures, and so fluctuation effects may be important.
Finally, diffusion with a short thermalization length has

also been seen in spin transport in strongly interacting
ultracold atoms in a trap [50]. The formulas we have
developed can be applied directly to longitudinal spin
diffusion in a magnetic field (to break spin reversal
symmetry) or to transverse spin diffusion without a
magnetic field or spontaneous magnetization (so that
isotropy prevents mixing of the two transverse modes).
At temperatures T ≲ EF, with electrons on the verge of
becoming nondegenerate, the thermalization length is
found to be lth ∼ 1=kF (there is no lattice scale in these
experiments). Diffusive fluctuations may therefore again be
important for transport.
In summary, long wavelength fluctuations about diffu-

sive dynamics may be relevant in condensed matter and
cold atom systems of widespread interest. We have seen
that a systematic derivation of these effects leads to
different results than previous, more phenomenological,
approaches. For this reason, it will be important to revisit
the computation of fluctuations in relativistic hydrodynam-
ics [9,51], which includes a sound mode in addition to
transverse momentum diffusion. Fluctuations in relativistic
hydrodynamics may have direct consequences for the
quark-gluon plasma.
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