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2Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom
3Laboratoire de Physique et Chimie Théoriques, CNRS, Université de Lorraine,
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The emergence of a special type of fluidlike behavior at large scales in one-dimensional (1D) quantum
integrable systems, theoretically predicted in O. A. Castro-Alvaredo et al., Emergent Hydrodynamics in
Integrable Quantum Systems Out of Equilibrium, Phys. Rev. X 6, 041065 (2016) and B. Bertini et al.,
Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents, Phys. Rev. Lett.
117, 207201 (2016), is established experimentally, by monitoring the time evolution of the in situ density
profile of a single 1D cloud of 87Rb atoms trapped on an atom chip after a quench of the longitudinal
trapping potential. The theory can be viewed as a dynamical extension of the thermodynamics of Yang and
Yang, and applies to the whole range of repulsive interaction strength and temperature of the gas. The
measurements, performed on weakly interacting atomic clouds that lie at the crossover between the
quasicondensate and the ideal Bose gas regimes, are in very good agreement with the theory. This contrasts
with the previously existing “conventional” hydrodynamic approach—that relies on the assumption of
local thermal equilibrium—which is unable to reproduce the experimental data.
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The emergent hydrodynamic behavior of many interact-
ing particles is a fascinating phenomenon: at the atomic
level, all quantum (classical) systems are described by the
Schrödinger (Newton) equation, yet these unique micro-
scopic descriptions give rise to a wealth of different liquid
and gas phases at larger scales, from the ideal gas to liquid
water to plasmas to superfluid helium to Bose-Einstein
condensates, to name but a few. Inferring the correct
hydrodynamic behavior directly from the microscopic
constituents of a many-body system is, in general, a very
ambitious task that typically involves extensive numerical
simulations and a hierarchy of different modelings on
intermediate scales [1,2].
However, there exist a few simpler systems where the

emergence of a special kind of hydrodynamics can be
linked directly to the underlying microscopic rules [3]. One
such system is the one-dimensional (1D) classical billiard,
or hard-rod gas [3–5], whose hydrodynamic behavior, as
seen below, is similar to that of the quantum system studied
in this Letter. The hard-rod gas consists of N identical
impenetrable rods of fixed diameter Δ that move along a
line, and exchange their momenta upon colliding elasti-
cally. At large N, the 1D billiard admits a hydrodynamic
description: in the limit of density variations of very long
wavelength, the billiard can be described by a continuous
distribution ρðx; vÞ of rods moving at velocity v around a
position x and this distribution satisfies an exact evolution
equation which resembles the Liouville equation for phase
space densities, up to a renormalization of the bare velocity

v [see Eq. (2)]. The latter renormalization encodes the
following microscopic mechanism: when one rod with
velocity v hits another one with velocity w < v from the
left, they exchange their momenta. Equivalently, because
all the rods are identical, one can think of the collision as an
instantaneous exchange of their positions, as if the rod with
bare velocity v jumped instantaneously by a distance Δ to
the right. Thus, the time needed by that rod to travel a
distance l is not l=v, but rather ðl − ΔÞ=v. For a finite
density of rods, this results in each rod with bare velocity v
moving at an effective velocity veffðvÞ, that depends on the
distribution ρðx; vÞ [3–5]. In distributions of long wave-
lengths, the evolution equation for ρðx; vÞ becomes a
hydrodynamic flow controlled by the local effective veloc-
ity veff. The 1D billiard thus exhibits an interesting hydro-
dynamic behavior that is straightforwardly related to its
microscopics. Slight generalizations of that model exist,
where the jumping distance Δ depends on the relative
velocity v − w, which possess a similar hydrodynamic
description [6].
Remarkably, the same emergent hydrodynamics was

rediscovered in 2016 in the context of 1D quantum
integrable models [7,8]—the resulting theoretical frame-
work is now dubbed generalized hydrodynamics (GHD).
Cold atom experiments offer a unique platform to test the
validity of this theoretical breakthrough. Indeed 1D clouds
are well described by the 1D Bose gas with contact
repulsion [9–11], a paradigmatic integrable system known
as the Lieb-Liniger model [12] whose large-scale dynamics
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is argued to be given by GHD [7,13–22]. Many other
integrable models are argued to be described by GHD,
leading to intense research activity in the past two years
[8,23–32].
The goal of this Letter is to establish experimentally

GHD as the correct hydrodynamic description of the 1D
Bose gas. To do so, we measure the in situ density profiles
of a time-evolving 1D atomic cloud trapped on an atom
chip, and compare the data with predictions from GHD. We
contrast those predictions with the ones of the conventional
hydrodynamic (CHD) approach—based on the assumption
of local thermal equilibrium [33]—that has been frequently
used [34–39]. Starting from a cloud at thermal equilibrium
in a longitudinal potential VðxÞ, dynamics is triggered by
suddenly quenching VðxÞ. We consider three types of
quenches. The first is a 1D expansion of the cloud from
an initial harmonic potential (Fig. 1); the second is a 1D
expansion from a double-well potential (Fig. 3); the third is
a quench from double-well to harmonic potential (Fig. 4).
We find that only GHD is able to accurately describe the
time evolution of the cloud beyond the harmonic case.
Generalized hydrodynamics.—The Hamiltonian that

describes our atomic gas of N bosons of mass m confined
in a potential VðxÞ with contact repulsion is

H ¼ −
ℏ2

2m

XN

i¼1

∂2
xi þ g

X

i<j

δðxi − xjÞ þ
XN

i¼1

VðxiÞ; ð1Þ

which reduces to the model solved by Lieb and Liniger [12]
when VðxÞ ¼ 0. As in any hydrodynamic approach, the
idea is to trade that microscopic model for a simpler, long-
wavelength, description in terms of continuous densities.

The fluid consists of local “fluid cells” of size δx, with δx
very short compared to the wavelength of density varia-
tions, but very long compared to microscopic lengths in the
gas. The state inside each local fluid cell [x, xþ δx] is a
macrostate of the Lieb-Liniger model that is entirely
characterized by its distribution ρðx; vÞ of rapidities v,
similarly to the celebrated thermodynamic Bethe ansatz of
Yang and Yang [46,47] (as explained in Refs. [7,8], that
these are the correct local macrostates can be seen as a
consequence of recent results on “generalized thermal-
ization” [48,49]). Semiclassically, one may view the
rapidity v as the bare velocity of a quasiparticle. As in
the 1D billiard, the velocity v gets renormalized in the
presence of other quasiparticles, resulting in an effective
velocity that is the solution of an integral equation [3,5,7,8],

veffðvÞ¼vþ
Z

dwρðwÞΔðv−wÞ½veffðvÞ−veffðwÞ�: ð2aÞ

However, while in the classical billiard the jumping
distance Δðv − wÞ at each collision is a constant—the
length of the rods—in the Bose gas it corresponds to the
time delay resulting from the two-body scattering phase
ϕðv−wÞ through differentiation [12], Δðv−wÞ¼−ðℏ=mÞ×
f½dϕðv−wÞ�=½dðv−wÞ�g. This gives Δðv−wÞ¼−fð2g=
mÞ=½ðg=ℏÞ2þðv−wÞ2�g for the Dirac delta potential (see
Ref. [6] for an extended discussion). The effective velocity
enters the evolution equation for the distribution ρðx; vÞ as
follows [7,8,13]:

∂tρþ ∂x½veffρ� ¼
�∂xV

m

�
∂vρ: ð2bÞ

This resembles a Liouville equation for phase space
densities of quasi-particles, although it is to be stressed
that it is a Euler hydrodynamic equation, determining the
evolution of the degrees of freedom emerging at large
wavelengths. GHD consists of Eqs. (2a) and (2b).
In practice, for a given initial distribution ρðx; vÞ, the
GHD equations can be efficiently solved numerically
[6,14,17,19]; in this Letter we rely on a finite-difference
method similar to the one discussed in Ref. [19].
Importantly, for our purposes, the atomic density nðxÞ is
obtained from the distribution ρðx; vÞ by integrating locally
over all rapidities, nðxÞ ¼ R

dvρðx; vÞ.
The atom chip.—Our experimental setup is described in

detail in Ref. [50]. 87Rb atoms are confined in a magnetic
trap produced by microwires deposited on the surface of a
chip. The transverse confinement is provided by three
1.3 mm long parallel wires (red wires in Fig. 2), which
carry ac currents modulated at 400 kHz: atoms are guided
along x, at a distance of 12μm above the central wire, with a
transverse frequency ω⊥ which lies between 5 and 8 kHz.
The modulation technique permits an independent control
of the longitudinal potential VðxÞ, which is realized by two

(a) (c)

(b)

FIG. 1. (i) In situ density profile after longitudinal expansion
from a harmonic trap of a 1D cloud of N ¼ 4600� 100 87Rb
atoms; the smooth curve is the theoretical prediction of GHD and
the noisy one is the experimental data. (ii) Initial profile obtained
from the Yang-Yang equation of state (YY), Gross-Pitaevskii,
ideal Bose gas, and classical field [40], with the same temperature
and chemical potential as for YY. (iii) Evolution from the YY
initial profile with GHD and conventional hydrodynamics.
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pairs of wires perpendicular to x, running dc current (blue
wires in Fig. 2). The atomic cloud is far from those wires, in
a region where VðxÞ is well approximated by its Taylor
expansion at small x. By tuning the currents in the four
wires, we effectively control the coefficients of the x, x2, x3,
and x4 terms in that expansion: we can thus produce
harmonic potentials, but also double-well potentials.
Using radio-frequency evaporative cooling we produce

cold atomic clouds in the 1D regime, with a typical energy
per atom smaller than the transverse energy gap: the
temperature and chemical potential fulfill kBT, μ < ℏω⊥.
The gas is then well described by the 1D model (1), with
the effective 1D repulsion strength g ¼ 2ℏaω⊥ [52], where
the 3d scattering length of 87Rb is a ¼ 5.3 nm, and the
mass ism ¼ 1.43 × 10−25 kg. Moreover the length scale on
which nðxÞ varies is much larger than microscopic
lengths—the phase correlation length at thermal equilibrium,
which is the largest microscopic length in the quasiconden-
sate regime, is of order nℏ2=ðmkBTÞ [53,54], typically
0.1 μm for our clouds—so the hydrodynamic description
applies. At equilibrium, the latter is equivalent to the local
density approximation (LDA), and the local properties of the
gas are parametrized by the dimensionless repulsion strength
γ ¼ mg=ðℏ2nÞ and the dimensionless temperature θ ¼
2ℏ2kBT=ðmg2Þ [51]. The range ðγ; θÞ explored by our data
sets is displayed in Fig. 2(b). In this Letter we analyze the
density profiles nðxÞ, which we measure using absorption
images [50], averaging over typically ten images, with a
pixel size of 1.74 μm in the atomic plane.
The Yang-Yang initial profile.—We start by trapping a

cloud of N ¼ 4600� 100 atoms, with ω⊥ ¼ 2π × ð7.75�
0.02Þ kHz, in a harmonic potential VðxÞ ¼ mω2

kx
2=2 with

ωk ¼ 2π × ð8.8� 0.04Þ Hz, and measure its density pro-
file [Fig. 1(b)]. To evaluate the temperature of the cloud, we
fit the experimental profile with the one predicted by the
Yang-Yang equation of state [9–11,46], relying on LDA

and on the assumption that the cloud is at thermal
equilibrium; we find T ¼ ð0.43� 0.013Þ μK. This gives
θ ¼ ð3.5� 0.1Þ × 102, while the interaction parameter is
γ ¼ ð2.8� 0.1Þ × 10−2 at the center.
As the density varies from the center of the cloud to the

wings, the gas locally explores several regimes [51], from
quasicondensate to highly degenerate ideal Bose gas (IBG)
to nondegenerate IBG; see Fig. 2(b). The Yang-Yang
equation of state [46] is exact in the entire phase diagram
of the Lieb-Liniger model, and thus faithfully describes the
density profile within LDA. We stress that this is the most
natural and powerful method to describe the initial state of
the gas [9–11], and that no simpler approximate theory [40]
can account for the whole initial density profile; see
Fig. 1(b). The Gross-Pitaevskii (GP) theory works in the
central part—because it is close to the quasicondensate
regime, but not in the wings. The opposite is true for the
IBG model: it correctly describes the wings, but not the
center of the cloud—the chemical potential is positive in
the center, so the density diverges in the IBG. The classical
field theory captures the quasicondensation transition for
gases deep in the weakly interacting regime but it fails to
reproduce faithfully the wings of our cloud since the latter
are not highly degenerate.
Expansion from harmonic trap: Agreement with both

GHD and CHD.—At t ¼ 0, we suddenly switch off the
longitudinal harmonic potential VðxÞ, and let the cloud
expand freely in one dimension. We measure the in situ
profiles at times t ¼ 10, 20, 30 and 40 ms; see Fig. 1(a).
Two theories are able to give predictions for the

expansion starting from the locally thermal initial state.
One is GHD, presented above, where the full distribution of
quasiparticles ρðx; vÞ is evolved in time [55]. The other is
the conventional hydrodynamics (CHD) of the gas which,
contrary to GHD, assumes that all local fluid cells are at
thermal equilibrium, and keeps track only of three quan-
tities that entirely describe the local state of the gas:
the density nðxÞ, the fluid velocity uðxÞ, and the internal
energy eðxÞ [40]. We calculate the evolution of the density
profile with both theories, and find that both of them
are in excellent agreement with the experimental data, see
Fig. 1(c) for the result at t ¼ 30 ms.
GHD and CHD thus appear to be indistinguishable in

that situation, at least for the expansion times that we probe
here. We attribute this coincidence to the initial harmonic
potential, which is very special. In this case it is simple to
see that the GHD and CHD predictions coincide in the ideal
Bose gas regime, and they can be shown to stay relatively
near even beyond that regime [56].
Discussion: GHD vs CHD.—Wewish to identify a setup

where the theoretical predictions of both theories clearly
differ, in order to experimentally discriminate between them.
This will be the case if GHD predicts, for some time t and at
someposition x, that the distribution of rapidities ρðx; vÞwill
differ strongly from a thermal equilibrium one.

(a) (b)

FIG. 2. (a) The atom chip setup with the four wires (blue)
creating the longitudinal potential and the three wires (red)
creating the strong transverse confinement. (b) Position of our
three data sets in the thermal equilibrium phase diagram of the
Lieb-Liniger gas with γ ¼ mg=ðℏ2nÞ and θ ¼ 2ℏ2kBT=ðmg2Þ
[51]. At the center of the cloud γ is of order 10−2, but it increases
in the wings as the density decreases; we display the segments
½γmin; γmin=10� corresponding to a local density nðxÞ not smaller
than a tenth of the maximal density in the cloud. The asymptotic
regimes of the Lieb-Liniger gas, separated by smooth crossovers,
are shown in colors. Our data sets lie at the crossover between the
quasicondensate and the ideal Bose gas regimes.

PHYSICAL REVIEW LETTERS 122, 090601 (2019)

090601-3



Such a situation occurs during the expansion of a cloud
that initially has two well separated density peaks (Fig. 3).
The reason can be captured by the following argument. The
fluid cells ½x; xþ δx� that are around either of the two peaks
contain more quasiparticles, including quasiparticles of
large rapidities, than the fluid cells near the center at
x ¼ 0. Under time evolution, the quasiparticles from the
left peak that have a large positive rapidityþu soonmeet the
ones coming from the right peak that have a large negative
rapidity −u, around x ¼ 0. Then, the distribution of rap-
idities near x ¼ 0 is double peaked, with maxima at v ≃�u,
so it is clearly very far from a thermal equilibrium distri-
bution, which would be single peaked. This phenomenon is
obvious for noninteracting particles, Eq. (2) reducing to the
standard Liouville equation, and GHD calculations indicate
that this is true also for interacting particles [17,57].
Expansion from a double well.—To realize the above

scenario, we prepare a cloud of N ¼ 6300� 200 atoms,
with ω⊥ ¼ 2π × ð8.1� 0.03Þ kHz, at thermal equilibrium
in a longitudinal double-well potential VðxÞ, such that the
atomic density presents two well separated peaks, the peak
density corresponding to γ ¼ ð2.45� 0.07Þ × 10−2. Then at
t ¼ 0we suddenly switch off the potentialVðxÞ andmeasure
the in situ profiles at time t ¼ 10, 25, 40, 55 ms (Fig. 3).
To comparewith theoretical predictions, we need to know

the initial temperature T of the cloud. However, we cannot
estimate T from fitting the initial density profile n0ðxÞ with
theYang-Yang equation of state and LDAbecausewe do not
have a good knowledge of the initial potential VðxÞ that we
create on the chip. Instead, we proceed as follows. First we
postulate an initial temperature T and construct the initial
rapidity distribution ρTðx; vÞ such that, for a given x,
ρTðx; vÞ is the Yang-Yang thermal equilibrium rapidity
distribution [46] at temperature T and density n0ðxÞ. We

then evolve ρTðx; vÞ using GHD and compute nTðx; tÞ.
While, by construction, nTðx; 0Þ ¼ n0ðxÞ, nTðx; tÞ may
differ from the data at later times. We repeat this procedure
for several initial temperatures and we select the value of T
whose time evolution is in best agreement with the data [58].
We obtain T ≃ 0.3 μK, corresponding to θ ≃ 2 × 102, see
Fig. 2(b).
The comparison between the expansion data and GHD is

shown in Fig. 3(a); the agreement is excellent. We also
simulate the time evolution of the cloud with CHD, for the
exact same initial state. As we expected, expanding from a
double-well potential reveals a clear difference between
CHD and GHD, see Fig. 3(b). Two large density waves
emerge in CHD and large gradients develop, eventually
leading to shocks [14], features which are not seen in
GHD [57].
Quench from double-well to harmonic potential.—

Finally, we trap N ¼ 3500� 140 atoms, with ω⊥¼2π×
ð5.4�0.02ÞkHz, in a double-well potential, and we study
the evolution of the cloud after suddenly switching off the
double well and replacing it by a harmonic potential of fre-
quency ωk ¼ 2π × ð6.5� 0.03Þ Hz. We measure the in situ
profiles at time t ¼ 0; 20; 40;…; 180 ms; see Fig. 4. The
initial peak density corresponds to γ¼ð2.13�0.07Þ×10−2.
To estimate the temperature of the cloud, we proceed as in
the previous case [58]; we find T ≃ 0.15 μK, corresponding
to θ ≃ 2.2 × 102 [Fig. 2(b)].
This quench protocol mimics the famous quantum

Newton’s Cradle experiment [59]—see also Refs. [60,61]
for recent realizations—which is realized here in a weakly
interacting gas. Exactly like in the previous paragraph, this is
a situation where GHD predicts the appearance of non-
thermal rapidity distributions [17,62], and must therefore
differ strongly from CHD. In fact, we have observed that
CHD develops a shock at short times (around t ≃ 30 ms), so
it is simply unable to give any prediction for the whole
evolution time investigated experimentally [63].

FIG. 4. Quench from double-well to harmonic potential,
compared to the GHD prediction, with an atomic cloud that
contains N ¼ 3500� 140 atoms initially. The main features of
the experimental data are well reproduced by GHD. One
experimental effect, not modeled in GHD, that appears to be
particularly important, are the three-body losses: after 180 ms, the
number of atoms drops by approximately 15%.

(a) (b)

FIG. 3. (i) Longitudinal expansion of a cloud of N ¼ 6300�
200 atoms initially trapped in a double-well potential, compared
with GHD. (ii) Even though the initial state is the same for GHD
and CHD, both theories clearly differ at later times. CHD
wrongly predicts the formation of two large density waves.
The error bar shown at the center at t ¼ 40 ms corresponds to a
68% confidence interval, and is representative for all data sets.
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Importantly, the motion is not periodic, contrary to what
would be seen purely in the IBG or in the strongly
interacting fermionized regime. Nevertheless, the motion
of the cloud preserves an approximate periodicity, with
a period close to, but slightly longer than, 2π=ωk [62]
(of course, if the cloud was symmetric under x → −x, the
period would be divided by two). At a quarter of the
period—and three quarters of the period—the density
distribution shows a single thin peak located near x ¼ 0.
We find good agreement with the GHD predictions, with
the initial temperature T as the only free parameter [58].
However, experimental effects not taken into account by
the GHD equations (2) appear to be more important in this
setup than in the previous ones of Figs. 1–3, where shorter
times were probed. For instance, the number of atoms N is
not constant in our experimental setup: it decreases with
time and drops by approximately 15% after 180 ms,
probably because of three-body losses that occur at large
density. This might partially explain the difference between
the experimental density profile and the GHD one. We also
suspect the small residual roughness of the potential VðxÞ
of affecting the experimental profiles.
Conclusion.—The results presented in this Letter are the

first experimental check of the validity of GHD for 1D
integrable quantum systems. We have shown that GHD—
which predicts the time evolution of the distribution of
rapidities—accurately captures the motion of 1D cold
bosonic clouds made of N ∼ 103 atoms, on timescales of
up to ∼0.2 s. We probed situations where the GHD
predictions significantly differ from the ones of the conven-
tional hydrodynamic approach, even at short times. We
stress that GHD is applicable to all regimes of the 1D Bose
gas, and it would therefore be particularly interesting to
probe the strongly interacting regime. More generally,
GHD is applicable to all Bethe ansatz solvable models,
including multicomponent mixtures of fermions and
bosons with symmetric interactions [64–67], so it would
be very exciting to use it to describe the dynamics of more
complex gases that can be realized in experimental setups
different from ours [68,69].
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