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We provide the first example of a symmetry protected quantum phase that has universal computational
power. This two-dimensional phase is protected by one-dimensional linelike symmetries that can be
understood in terms of the local symmetries of a tensor network. These local symmetries imply that every
ground state in the phase is a universal resource for measurement-based quantum computation.
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In the presence of symmetry, quantum phases of matter
can have computational power. This was first conjectured
in Refs. [1-3] and has been proven [4—6] or numerically
supported [7,8] in several instances. The important property
is that the computational power is uniform. It does not
depend on the precise choice of the state within the phase,
and it is thus a property of the phase itself. In this way,
phases of quantum matter acquire a computational char-
acterization and computational value.

The quantum computational power of physical phases is
utilized by measurement-based quantum computation
(MBQC) [9], in which the process of computation is driven
by local measurements on an initial entangled state. Here,
we consider initial states that originate from symmetry
protected topological (SPT) phases [10-12].

Proofs of the existence of such “computational phases
of quantum matter” have so far been confined to spatial
dimension 1. After it was shown that computational
wire—the ability to shuttle quantum information from one
end of a spin chain to the other—is a property of certain SPT
phases [3], the first phase permitting quantum computations
on a single logical qubit was described in Ref. [4].
In fact, uniform computational power is ubiquitous in
one-dimensional SPT phases [5,6].

Computationally, physical phases in dimension 2 and
higher are more interesting than in dimension 1. The reason
is that, in MBQC, one spatial dimension plays the role of
the circuit model time. Therefore, MBQC in dimension D
corresponds to the circuit model in dimension D — 1, and
universal MBQC is possible only in D > 2.

Yet, to date, the evidence for quantum computational
phases of matter is much more scant for D > 2 than for
D = 1. Numerical evidence exists for deformed Affleck-
Kennedy-Lieb-Tasaki Hamiltonians on the honeycomb
lattice [7,8,13]. In addition, extended regions of constant
computational power have also been observed in SPT
phases with Z, symmetry [14].
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Numerous computationally universal resources states for
MBQC have been constructed [15-18] using the tools
of group cohomology that also form the basis for the
classification of SPT order [11,12]. From the starting point
of these special states, it remains open what happens to the
computational power as one probes deeper into the SPT
phases surrounding them.

For the cluster phase in D = 2, which is a symmetry
protected phase that contains the cluster state, it was shown
analytically that universal computational power persists
throughout a finite region around the cluster state [19].

Here, we prove the existence of a computationally
universal phase of quantum matter in spatial dimension 2;
see Fig. 1. Asin Ref. [19], the phase we consider is protected
by one-dimensional linelike symmetries, generalizing the
conventional notion of symmetry protected topological order
defined by global on-site symmetries. As in the case of global
symmetries, these line symmetries can be built from the local
symmetries of a tensor network that persist throughout the
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FIG. 1. Symmetry protected quantum correlations enable uni-
form computational power throughout the two-dimensional (2D)
cluster phase. The long-range symmetry shown is composed of
the symmetries of local projected entangled pair state (PEPS)
tensors.
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phase. Using this, we establish that computational univer-
sality persists throughout the entire phase. The backbone of
the computational scheme is symmetry protected correla-
tions in a virtual quantum register; see Fig. 1.

Setting and result—We consider a two-dimensional
simple square spin lattice that is, for simplicity of boundary
conditions, embedded in a torus of a small circumference n
and a large circumference nN, with n, N € N, N > n, and
n even. Its Hamiltonian is invariant under all lattice
translations and the symmetries

nN—-1
U., = ®0 Xycyx and U._ =
x=

for all ¢ € Z,,. Therein, X = o, and the addition in the
second index of X is mod n. A graphical rendering of these
symmetries is provided in Fig. 2(a). These symmetries were
previously considered in Ref. [19]. We consider phases in
which the ground state is unique, and thus shares the
symmetries.

As the Hamiltonian is varied while respecting the
symmetries [Eq. (1)], the respective ground states arrange
into phases. The central object of interest is the “2D cluster
phase,” i.e., the physical phase that respects the symmetries
[Eq. (1)] and which contains the 2D cluster state.

The main result of this Letter is the following:

Theorem [.—For a spin-1/2 lattice on a torus with
circumferences n and Nn, where N > n and n is even, all
ground states in the cluster phase, except a possible set of
measure 0, are universal resources for measurement-based
quantum computations on n/2 logical qubits.

FIG. 2. (a) Linelike symmetry of Eq. (1). All translations are
also symmetries. (b), (c) Generators of Pauli operators that
commute with the symmetries [Eq. (1)]. (b) Local operators
X, and Star;, for all sites k and [. (c) Geometrically nonlocal
operators Z; ® Z;. Locations i and j are consecutive intersections
of supports a and f of two symmetries.

To facilitate the proof of Theorem 1, we introduce the
notion of “clusterlike” states |®). For a square grid in
dimension 2, we represent states as projected entangled
pair states (PEPSs) [20] with local tensors Ag, such that
contracting virtual legs on a torus as in Fig. 1 describes the
wave function of |®). The clusterlike states are those for
which the PEPS tensors have the symmetries

XX@] V474 7ol
. S ¥-% - & (2)
I I I 1 I
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Therein, red (blue) legs indicate Pauli operators X (Z). This
notation means that, for example, acting on the physical leg
(diagonally directed) of the PEPS tensor with a Pauli X is
equivalent to a corresponding action of Pauli operators on
the virtual legs. The reason for calling states satisfying
Eq. (2) clusterlike is that the cluster state itself satisfies
Eq. (2). Furthermore, if we add

B

to those symmetries, then we obtain cluster states as the
only solution of the joint symmetry constraints.

The proof of Theorem 1 splits into two parts. First, we
show that all states in the 2D cluster phase are clusterlike,
and then we demonstrate that clusterlikeness implies
universal computational power.

A 2D physical phase of clusterlike states.—Here, we
prove the following result:

Proposition 1. —Every ground state |®) in the 2D cluster
phase has a description in terms of a local tensor Ag that
has the symmetries of Eq. (2).

Our starting point is the characterization of SPT phases
in terms of symmetric quantum circuits. A symmetric
quantum circuit is a sequence of unitary gates U =

zl‘=1 U;, where each gate U; is invariant under the
symmetry group G of Eq. (1), [U;,U(g)] =0, for all
g € G. In any such circuit which is also local, each gate
U, acts only on a bounded number of qubits [21]. We then
have the following result [11]:

Lemma 1.—Symmetric gapped ground states in the same
SPT phase are connected by symmetric local quantum
circuits of constant depth.

To prove Proposition 1, we analyze the structure of the
symmetry-respecting gates Ug, ; of the circuit Ug mapping
the cluster state |C) to a given state |®@) in the cluster phase
|®) = Ug|C). Writing

J

only symmetry-respecting n-qubit Pauli operators P;,
P; €P,, can appear on the rhs. The generators of such
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Pauli operators are displayed in Figs. 2(b) and 2(c).
Furthermore, the operators shown in Fig. 2(c) do not
contribute because they are geometrically nonlocal. Thus,
the Pauli operators appearing on the rhs of Eq. (3) are
generated by local operators X; and Z-type star operators
Star; for all sites k and [ of the lattice (see Sec. I A of the
Supplementary Material (SM), Lemma 3 [22]).

Now, expanding the entire circuit Ug into a sum of Pauli
operators, every Pauli operator in this expansion is also a
product of X and star operators. We further observe that,
by the form of the cluster state stabilizer,

Stary|C) = X;|C), (4)

for all lattice sites k. Using relation (4), all star operators in
the expansion of Uy, can be eliminated. We thereby obtain a
transformation Tg that satisfies the relation T¢|C) =
Us|C) = |®), and it is composed of Pauli-X operators
only,

To = eX(i). 5)

Therein, X(j) == ®(X;)’* is an X-type Pauli operator with
k

support on the n x nN torus; i.e., j is a binary vector with
n*N components.

Proof of Proposition 1.—To illustrate the idea of the
proof, we first discuss the special case where the map 7' is
a tensor product of local factors T¢ = ?tq)yk. Then, to

obtain a local tensor Ag representing |®), we apply T
sitewise to the local tensor C representing the cluster state.
Graphically,

Because, by Eq. (5), t¢ is a linear combination of 7 and X, it
commutes with X. Hence, the symmetries [Eq. (2)] of the
cluster state tensors C are also symmetries of the tensors Ag
representing |®).

Now, turning to the general case, the action of Tq, on |C)
results in local tensors Ag of the form

where the “junk tensor” Bg [3] forms a tensor network
representation of the map 74, and it emerges as a
consequence of the nonlocality of the map 7'¢. It inherits
from T4 the property that, on the physical leg of C

(pointing upwards), it acts as I or X, depending on the
state of the virtual links a, ..., d (for details, see the SM,
Sec. I B [22]). The junk tensor Bg, thus commutes with the
action of the local Pauli-X operator,

X
'—B; '—Bq;
X

As aresult, the symmetries [Eq. (2)] hold for all tensors Ag
describing a state |®) in the cluster phase. O

Cluster symmetries and computation.—We now show
that the symmetries [Eq. (2)] of the PEPS tensors imply
MBQC universality of the corresponding quantum state.
This proceeds in two steps. We establish (i) the computa-
tional wire, i.e., the ability to shuttle quantum information
across the torus; and (ii) a universal set of quantum gates.

Computational wire: We now map to a quasi-one-
dimensional (quasi-1D) setting by grouping spins into
blocks of size n x n. If we block n x n copies of the
tensor Ag, as in Fig. 1, we obtain the block tensor Ag,
which forms a matrix product state (MPS) representation
[23] of the quasi-1D system. Contracting the physical legs
of this tensor with local X eigenstates labeled by the n?-
component binary vector i gives the tensor component
Agp(t). We can now use the symmetries in Eq. (2) to
constrain these tensor components:

Lemma 2.—Consider a torus of size n x nN and n € 2N.
For all ground states |®) in the 2D cluster phase, the
corresponding block tensors Ag (1) satisfy

Ao(1) = C(1) ® Bo(1). (7)

The logical tensors C(1) are constant throughout the phase,
and

CH)eP,. Vi (8)

Lemma 2 establishes the primitive of computational
wire, similar to Theorem 1 in Ref. [3]. The Hilbert space on
which the tensor components Ag (i) act is the so-called
virtual space, which decomposes into a “logical subsystem”
and “junk subsystem” [3]. Upon measurement in the X
basis of all spins in a block, the logical subsystem is acted
on by the operators C(i), which are uniform across the
cluster phase. Conversely, the operators Bg (1) acting on the
junk space vary uncontrollably across the phase. Thus, to
achieve computation, the logical subspace is used to encode
and process information. The operators C(i) become the
usual outcome-dependent byproduct operators of MBQC.
They are of computational use, as described below under
the “quantum gates” heading.

Two points are worth noting: one technical, and one
physical. (i) With Lemma 2, we have mapped the original
two-dimensional system to an effectively one-dimensional
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system composed of blocks. A wealth of techniques
established for 1D SPT order thereby becomes available
[3-6], [10-12,24]. (ii)) The blocking notwithstanding, the
basis {|i)} in which Eq. (8) holds is local ar the level of
individual spins, and not only at block level. (It is the local
X eigenbasis.) Because MBQC uses 1-spin local measure-
ments, we require this stronger notion of locality.

Finally, we explain why Lemma 2 is a consequence of
the symmetries of the local tensors Ag in the cluster phase.
The local symmetries [Eq. (2)] can be combined in such a
way that they map Pauli operators on the virtual logical
register one column farther to the right,

for all [. (The tensor factors “I” for the action of the
symmetries on the junk systems have been omitted.)
Iterating these propagation relations n times (n is the
circumference of the torus), we find that, upon measure-
ment of the physical qubits in the local X basis, each virtual
local Pauli operator Z is mapped onto itself up to sign. See
Fig. 1 for illustration (n = 6 is shown). The same is true for
Pauli operators X, cf. Fig. 4 in the SM [22]. Thus, every
virtual Pauli operator is mapped to itself up to sign after one
clock cycle of duration n. Therefore, the action of Ag on
the logical subsystem is indeed by Pauli operators, as stated
by Lemma 2. As a technical remark, we note that the
following construction requires that Lemma 2 holds also
when Ay is put into the so-called canonical MPS form [23].
Details of this condition as well as the proof of its veracity
are given in the SM, Sec. IIl A [22].

Quantum gates: The subsequent construction signifi-
cantly differs from the standard mapping to the circuit
model [9]. Specifically, the technique of “cutting out
coupled wires” by local Z measurements is not available
throughout the cluster phase, and it is therefore replaced.

As a first step, we observe that the byproduct operators
C(i) are of the form

(@) ~ [ [clr. (10)
kek
where “~” is equality up to phase, K is the n x n block of
spins, and i; is the measurement outcome at location k.
Equation (10) means that every site k in the block has its
own byproduct operator C[k]. This is known to hold for the

cluster state [9] and, by Lemma 2, it extends to the entire
cluster phase.

Next, we find the precise form of the byproduct operators
C[k] for certain sites k € K. Namely, for the sites of
k= (1,1), (2,1), and (n,1) in the first, second, and last
columns of each block, the operators C[k| are

Cl(1,D] =z,
Cl(2,0)] = Zi.1X1Z1 44, (11)
Cl(n,1)] = X,.

They can be understood as follows. For the last column in
the block, n, the operator C[(n, [)] is the standard byproduct
operator for cluster states. By Lemma 2, it holds in the
entire cluster phase. (See the SM, Sec. Il B [22], for the
result in canonical form.) The C|(r, [)] for earlier columns r
are also X operators, inserted at position (r,[). They are
then propagated forward to the right boundary of the block
using Eq. (9), resulting in Eq. (11).

If the resource is a 2D cluster state, which is the special
state in the phase of interest, then on-site measurements in
the X/Y plane of the Bloch sphere are universal [25].
Because of the product form of the byproduct operators
[Eq. (10)], every local measurement implements one
logical gate. Suppose the measurement at site k is in the
basis spanned by |0, @), = cos(a)|0), —isin(a)|1), and
1,a), = —isin(a)|0); + cos(a)|1), with |0) and |1) refer-
ring to eigenstates of X. The resulting gate is
Uali) = ic. al0)l + ix. al1),CIk]. hence

Uqli) = C[k]" exp(iaC[k]).

Here, the operators C[k]| of Eq. (8) become computational
tools because they specify the unitary gate implemented.
The outcome-dependent byproduct operator can be com-
pensated for by classical side processing and adaptive
measurement bases [9]. With Eq. (11), the gate set

U= {eiaZ,,,X,ZH] , eiozZ,7 eiaX,7 V ac R} (12)
can be realized. U/ is a universal set [26]; also see Sec. IV B
of the SM [22].

When moving away from the cluster state into the cluster
phase, nontrivial tensors B¢ appear; and measurement in a
local basis away from the symmetry-respecting X basis
becomes nontrivial. If unaccounted for, the logical sub-
system becomes entangled with the junk subsystem
through such measurement [3], which introduces
decoherence into the logical processing. However, this
undesirable effect can be prevented by the techniques of
Ref. [6]. By virtue of Lemma 2, we mapped to a quasi-1D
setting to which we can apply Theorem 2 of Ref. [6].
(The essentials of Ref. [6] are reviewed in Sec. IV A of the
SM [22].) As a result, the universal gate set I/ can be
implemented in the whole cluster phase, and not only on the
cluster state.
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To summarize, the argument for computational univer-
sality of the 2D cluster phase splits into two parts. First, we
have shown in Proposition 1 that all ground states in the 2D
cluster phase are clusterlike, i.e., they satisfy the symmetry
constraints [Eq. (2)]. Second, by mapping to a quasi-one-
dimensional system, we showed that the symmetries
[Eq. (2)] lead to universal computational power. Taken
together, these two results yield Theorem 1.

Conclusion—We have described the first symmetry
protected topological phase in which every ground state
(up to a possible set of measure 0) has universal power for
measurement-based quantum computation. Our phase is
protected by symmetries acting on a lower-dimensional
subsystem, and it is associated with a set of local sym-
metries of tensor networks; see Eq. (2). These symmetries
are sufficient to guarantee computational universality of the
corresponding tensor network. What implications these
symmetries have on the physics of this phase and others
like it remains an interesting question.

As for the implications on the computational side, we ask
the following: Can the computational power of quantum
phases of matter be classified? In the spirit of this question,
we conclude with three more specific ones: (i) How broadly
can the present construction be generalized? (ii) The line-
like symmetries we consider are neither global symmetries,
which are typically used to define SPT phases, nor are they
local like in a lattice gauge theory. Indeed, they are more
closely related to the “higher-form” symmetries considered
in Refs. [27-29], which act on lower-dimensional sub-
manifolds of the whole lattice. Is this type of symmetry
necessary for a computationally universal phase, or can
other structurally different symmetries lead to similar
results? (iii)) As one-dimensional computational phases
[5,6] build on symmetry protected computational wire
[3], the present construction builds on a symmetry pro-
tected quantum cellular automaton. In particular, Eq. (9)
defines the transition function of a quantum cellular
automaton. Quantum cellular automata have been classified
[30-33]. What is the relation between this classification and
computational phases of quantum matter?
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