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For a long periodic chain of Bose condensates prepared in the free space, the subsequent evolution and
interference dramatically depend on the difference between the phases of the adjacent and more distant
condensates. If the phases are equal, the initial periodic density distribution reappears at later times, which
is known as the Talbot effect. For randomly related phases, we have found that a spatial order also appears
in the interference, while the evolution of the fringes differs with the Talbot effect qualitatively. Even a
small phase disorder is sufficient for qualitatively altering the interference, though maybe at long evolution
times. This effect may be used for measuring the amount of coherence between adjacent condensates and
the correlation length along the chain.
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A chain of interfering sources is a paradigm in several
physics areas. In optics, for a long chain of elements with
equal phases, the initial intensity distribution reestablishes
at certain propagation distances [1], which is referred to as
the Talbot effect. Similar phenomena have been observed in
acoustics [2], vacuum electronics [3,4], plasmonics [5], and
spintronics [6].
Solid state physics offers a variety of situations, where

each chain element has either thermal or quantum fluctua-
tions of its phase. In the Josephson-junction chains such
fluctuations drive transitions between superconducting and
isolating states [7,8]. Phase slips and the resulting negative
interference may prevent the supercurrent from flowing
through a chain [9].
Physics of ultracold atoms and molecules overlaps with

condensed matter physics [10,11] and optics [12]. The
Talbot effect has been detected [13] for a chain of phased
matter-wave sources obtained by passing a monochromatic
atomic beam through a periodic grating. Fluctuations of the
phases appear and may be controlled in a chain of Bose-
Einstein condensates (BECs) in a one-dimensional optical
lattice [14]. Interference of condensates in the free space,
upon lattice extinction, has been observed both for corre-
lated and random phases [14,15] in the far-field diffraction
regime, which is different from the near-field condition
of the Talbot effect. Randomly phased BECs surprisingly
produce spatially periodic interference fringes [14,15]. At
the qualitative level, however, the far-field interference
pattern is similar to that of phase-locked BECs because the
fringe period is the same [14].
In this Letter, we analyze the spatial order in the long-

chain or, equivalently, near-field-diffraction limit, with each
source spreading over a distance much smaller than the
chain length. We show that the randomly phased elements
produce a qualitatively different interference pattern in

comparison to the equally phased sources. For equal
phases, the Talbot effect is observed. For uncorrelated
phases, the interference is also showing a spatial order, with
period, however, different from that seen within the Talbot
effect. For a partial correlation the two interference types
coexist, which gives a way for measuring the amount of
phase disorder and the correlation length. Even a small
disorder between distant condensates is sufficient to quali-
tatively change the near-field interference, but maybe for
long interference times.
In the experiment, a long chain of molecular Bose-

Einstein condensates interferes in the free space after
preparation in and release from a one-dimensional optical
lattice shown in Fig. 1(a). The experimental setup is similar
to that of Ref. [16] and references therein. The bosons
are weakly bound Li2 molecules, each composed of two
fermionic 6Li atoms. The lattice is formed by two counter-
propagating laser beams at 10.6 μm producing potential

Vsðx⃗Þ ¼ sErec

h
1 − e−2MErecðx2þy2Þ=ðℏλÞ2cos2κz

i
; ð1Þ

(a) (b)

FIG. 1. (a) BECs in the lattice prior to the release and
interference. The clouds of molecules shown in dark red, the
standing-wave intensity shown in light purple. (b) The initial
wave function along the lattice. The density is periodic, while
phase φj of the jth condensate is generally unrestricted with
respect to the phases of other BECs.
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where x⃗ ¼ ðx; y; zÞ, M is the Li2 mass, κ ¼ 2π=ð10.6 μmÞ,
Erec ¼ ℏ2κ2=2M is the recoil energy, s is the dimensionless
lattice depth, and λ ¼ 27.4 is the anisotropy ratio of each
lattice site. The lattice period is d ¼ 5.3 μm. The harmonic
expansion of Vsðx⃗Þ near each minimum gives frequencies
ωz ≡ 2

ffiffiffi
s

p
Erec=ℏ and ω⊥ ¼ ωz=λ. For all data of the

main text except those of Fig. 5, the lattice parameters
are sErec ¼ 23.3Erec ¼ 165 nK, ωz=ð2πÞ ¼ 1424 Hz,
and ω⊥=ð2πÞ ¼ 52 Hz. About 100 wells are populated.
Central K ¼ 50 clouds contain nearly equal number of
molecules N, which typically is in range 400–1100. The
molecular condensates are obtained by evaporative cooling
[16,17] of equal mixture of atoms in the lowest-energy
hyperfine states j1i and j2i [18] at magnetic field B ¼
730 G, on the Bose side of a Feshbach resonance [19].
At the end of the preparation, time t ¼ 0, the optical-

lattice potential (1) is quickly extinguished over ∼1 μs, the
clouds start to spread out and interfere. The interference
takes place in the time domain, without propagation of the
clouds along x or y. The dynamics in the z direction is most
notable, while the expansion in the orthogonal directions is
slow and unimportant here. The characteristic timescale of
the interference is the Talbot time Td≡Md2=πℏ¼1.69ms,
which is set by the distance d between the clouds.
The condensates are observed via the absorptive imaging

[16]. A pulse of light resonant to the atomic transition is
shed in the y direction. The pulse duration 4 μs is shorter
than any relevant scale of the matter-wave diffraction.
The shadow from the absorption is projected onto a CCD
camera which allows us to reconstruct the molecular
density integrated along the line of sight n2ðx; zÞ ¼R
nðx⃗Þdy. In Fig. 2(a) one may see the condensates prior

to the release into the free space. The imaging destroys the
state of the quantum system. For observing the interference
at other times t, the BECs are prepared again.
The evolution of the condensates may be understood by

considering the one-dimensional free-space dynamics of
initial wave function

ψðz; t ¼ 0Þ ∝
XK
j¼1

e−ðz−jdÞ2=4σ2eiφj ; ð2Þ

where condensate half width σ satisfies the condition of no
overlapping, σ ≪ d. Such a wave function depicted in
Fig. 1(b) has a periodic absolute value jψðz − d; t ¼ 0Þj ¼
jψðz; t ¼ 0Þj, while phases φj are generally unrestricted.
The outcome of the interference depends on the relation
between phases φj. In the thermal equilibrium the relation
between the phases settles as a result of competition: On
one hand, tunneling tends to equalize the phases, on the
other hand, the interaction with the uncondensed molecules
as well as quantum fluctuations randomizes the phases.
The quantum Talbot effect appears in the case of equal
phases φj ¼ invðjÞ. In the course of the evolution, the

initial wave function reestablishes at times t that are integer
multiples of Td.
Experimental demonstration of the Talbot effect can be

seen in Figs. 2(a), 2(b) referring to t ¼ 0 and t ¼ Td,
respectively. In particular, image 2(b) (left) taken after the
free evolution, at t ¼ Td, nearly reproduces the t ¼ 0 photo
of the BECs. In Figs. 2(a) and 2(b) we also show the
Fourier transforms ñ1ðk; tÞ≡ R

n1ðz; tÞe−ikzdz of one-
dimensional density distribution n1ðzÞ≡

R
n2ðx; zÞdx.

The closeness of the spectrum at t ¼ Td to the initial
spectrum is a signature of the Talbot effect.
We now check whether the BEC parameters are con-

sistent with the phase locking required for the Talbot effect.
For the data of Fig. 2, the evaporative cooling [16] finishes
at lattice depth 16.6Erec. Afterwards, the lattice is slowly
raised to final depth 23.3Erec. There are N ¼ 580� 40
molecules per well, where the error is the standard
deviation found from several experimental repetitions.
Prior to the release, the condensates occupy the lowest
Bloch band, which is seen from the chemical-potential

value μ ¼ ℏω⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nðamol=lzÞ

ffiffiffiffiffiffiffiffi
2=π

pq
¼ 0.36ℏωz < ℏωz,

where lz ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðMωzÞ

p
and amol ¼ 0.6 a ¼ 1520 bohr is

the molecule-molecule s-wave scattering length expressed
via the atom-atom scattering length a [20]. The temperature
is estimated from images at t ¼ 0 by fitting the data
with the bimodal distribution typical for a 2D BEC [16],
which gives average temperature T ¼ 0.45TBEC 2D, where

(a)

(b)

(c)

FIG. 2. Interference of a chain with nearly phased adjacent
condensates: images (left) and the respective Fourier transforms
jñ1ðkÞj (right). (a) At t ¼ 0, the onset of the expansion. (b) At
t ¼ Td, the initial density distribution is nearly reestablished
showing the Talbot effect. Each BEC overlaps with about 3
neighbors on the left and 3 on the right. (c) At t ¼ 2Td, the
interference is governed by the random phase relation between
more distant neighbors which now overlap. In (b),(c), the white
bars show the full rms width along z of a single condensate after
the expansion.
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TBEC 2D ¼ ℏω⊥
ffiffiffiffiffiffiffi
6N

p
=π ¼ 0.69ℏωz is the condensation

temperature of a 2D noninteracting Bose gas in a
harmonic trap. Such a fit, however, may overestimate
the temperature [21]. About 1.5% of the molecules are
thermally excited to the 1st Bloch band. The tunnel time
for a single molecule in the lowest band is 190 ms. The
Bose statistics, however, should enhance the tunnel rate
by a factor Nð1 − T2=T2

BEC 2DÞ, which gives the tunnel
time τtun ¼ 410 μs. The thermal dephasing time may be
estimated as ℏ=T ¼ 360 μs. The tunneling and dephasing
rates are about the same, which, therefore, leaves
the possibility of phase locking. The interaction-
induced phase mismatch between the adjacent conden-
sates is small for all reported experiments and may
be estimated as δφ ¼ ½τtunEc=ð4ℏÞ�1=4 ∼ 0.1 ≪ 2π, where
Ec ¼ 2dμ=dN [22].
An evolution, which qualitatively differs from the Talbot

effect, is seen for condensates that undergo less cooling.
Now the evaporative cooling [16] proceeds only down to
lattice depth 23.3Erec. Figure 3(a) shows the image of
the condensates immediately prior to the release, while
Figs. 3(b), 3(c) display the interference at t ¼ Td and
t ¼ 2Td, respectively. Both at t ¼ Td and t ¼ 2Td there is a
spatial order in the density, which may be seen from the
respective spatial spectra ñ1ðk; tÞ. The spatial period in both
cases, however, is larger than in the initial density dis-
tribution. For t ¼ Td the Fourier transform has the lowest-
momentum peak at about k ¼ π=d, which corresponds to
period 2d. For t ¼ 2Td the principal harmonic is near k ¼
π=ð2dÞ corresponding to period 4d. The fringe straightness

along x also confirms that the molecules are condensed in
each well.
Estimating the BEC parameters for Fig. 3, we find

T ¼ 0.62TBEC 2D and N ¼ 440� 20. This gives thermal
dephasing time ℏ=T ¼ 300 μs and Bose-enhanced tunnel
time τtun ¼ 710 μs, making the system more prone to
dephasing than in the case where the Talbot effect is
observed in Fig. 2.
We interpret Fig. 3 as the near-field interference of

molecular BECs whose phases φj are random relative to
each other. A model qualitatively explaining the observa-
tion is presented below. At t ¼ 0, the wave function is
taken in form (2) with phases φj randomly distributed
over interval ½0; 2π�. For later times t, Fourier transform
ñ1ðk; tÞ ¼

R jψðz; tÞj2e−ikzdz may be calculated. In the
long-chain limit K → ∞, ñ1ðk; tÞ takes form [23]

ñ1ðk; tÞ ∝
2π

d
δðkÞ þ

ffiffiffiffiffiffiffi
πK

p

2
e−k

2σ2=2

×
X∞

j¼−∞;j≠0
e−ðj−kdt=TdπÞ2d2=8σ2eiφ

0
j ; ð3Þ

where φ0
j are random phases satisfying condition φ0

j ¼
−φ0−j. Because of condition σ ≪ d, the Gaussians in sum
(3) are narrow peaks. Therefore, at time t the density is a
sum of harmonics with wave vectors k ¼ jπTd=ðtdÞ for
integer j. This means that the density distribution n1ðz; tÞ is
periodic in space with spatial period

2π

k
¼ d

2t
Td

: ð4Þ

Therefore, there is a spatial order in the density, in agree-
ment with the data of Figs. 3(b) and 3(c). The calculated
density spectrum is shown in Fig. 4. The spectrum envelope
is preserved during the evolution, while the peaks come
closer and become narrower. The density-spectrum for-
mula (3) is valid for t ≫ Tdσ=d, which is not a stringent
constraint because σ ≪ d. This implies that the analysis is
correct for t ¼ Td as well as for even earlier times.

(a)

(b)

(c)

FIG. 3. Interference of a chain where the adjacent condensates
have nearly random relative phases: images (left) and the
respective Fourier transforms jñ1ðkÞj (right). (a) At t ¼ 0, the
onset of the expansion. (b) At t ¼ Td, the principal harmonic in
the density distribution is at about k ¼ π=d corresponding to
period 2d. (c) At t ¼ 2Td, the principal harmonic corresponds to
period ≃ 4d.

FIG. 4. The absolute value of density spectrum (3) at t ¼ Td.
The principal harmonic lies at k ¼ π=d corresponding to spatial
period 2d.
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Whenever the phases are not completely random, the
Talbot effect coexists with the random-phase interference.
A combination of these two effects is seen in Fig. 5. In the
Fourier transform, the tall narrow peak at k ¼ 2π=d is due
to the correlations between the condensates. There is also a
wider peak at k ¼ 0.45 × 2π=d and its 2nd harmonic at
k ¼ 0.9 × 2π=d. Their centers are found by fitting a curve
[Fig. 5(right)], which is constrained to have maxima at a
principle wave vector and a twice larger value. These two
peaks are the signature of a partial uncorrelation in the
phases, because no peak below k ¼ 2π=d may appear
within the Talbot effect. The peak centers are somewhat
below values k ¼ 0.5 × 2π=ð2dÞ and k ¼ 2π=ð2dÞ, respec-
tively, predicted within model (3) of fully uncorrelated
BECs. This small leftward shift is due to the mean-field
repulsion as we have found from a numerical simulation
based on the Gross-Pitaevskii equation [24,25]. The repul-
sion effectively speeds up the time in Eqs. (3) and (4)
shifting the peaks to lower momenta. The leftward shift is
not due to the finite chain length because this would have
shifted proportionally both the peaks related to the phased
and unphased interference.
A crossover from the Talbot effect to the random-phase

interference is observed by varying lattice depth s [26].
The relation between the peaks originating from the

two interference scenarios, as in Fig. 5, may be used for
measuring the amount of correlation between adjacent
condensates. The correlation measurement can be done
in a single experimental repetition. In principle, even a
small departure from full correlation may be detected
because any randomness changes the interference qualita-
tively. For example, in the spectrum of Fig. 2(b), the little
bulging near k ¼ 0.5 × 2π=ð2dÞ is a signature of a small
decoherence between the condensates.
A seeming controversy between the interference in

Fig. 2(b) and Fig. 5 may be noted by analyzing the
respective parameters. For the experiment of Fig. 5, the
BEC chain is evaporatively cooled down to lattice depth
22.8Erec, and the condensates are released at this depth. For
each cell N ¼ 1060� 80 and T ¼ 0.40TBEC 2D. The result-
ing ratio of Bose-enhanced tunnel time τtun ¼ 200 μs and
thermal dephasing time ℏ=T ¼ 310 μs nominally makes
this chain more prone to phase locking than in the case of

Fig. 2. Nevertheless in Fig. 2(b), the Talbot effect is more
pronounced. This controversy may be resolved by account-
ing for a stray magnetic-field curvature, which acts on
atoms and, together with lattice (1), produces potential

Vðx⃗Þ ¼ Vsðx⃗Þ þMω2
B

�
z2

2
þ x2

2
− y2

�
: ð5Þ

The primary curvature source is the electromagnet coils
for tuning the interactions near the Feshbach resonance. By
another pair of coils, the curvature is canceled down to
ω2
B=ð2πÞ2 ¼ 0þ7

−1.6 Hz2 [26]. The stray curvature, which
remains within the error margins, causes small spatial
variation of the cell depths. Evaporative cooling creates
small unevenness in the chemical potentials which in turn
brings about Josephson oscillations and pseudorandomiza-
tion of the BEC phases. Such pseudorandomization may
be the reason for stronger randomness-related peaks in
Fig. 5 (right).
In the light of the two interference types clearly combined

in Fig. 5, the spectrum of Fig. 3(b) may be reanalyzed: It is
possible that the spike at sharply k ¼ 2π=ð2dÞ is due to a
small residual coherence.
Infinitely-extended spatial correlations are not possible

since the chain is one-dimensional [7]. The phase corre-
lation hcosðφi − φjÞi should decay either as a power law
∝ ji − jj−ν or exponentially ∝ α−ji−jj [7,22]. The decay of
correlations may be observed in the near-field interference
by varying the number of neighbors, each BEC interferes
with. This number depends on the free-evolution time t.
In Figs. 2(b) and 2(c), one may see that the interference
changes qualitatively with the increasing number of the
involved neighbors. At t ¼ Td the fringes have period d
[Fig. 2(b)] consistently with the Talbot effect, which
means that the interfering clouds are phased with each
other. The experiment is repeated with longer evolution
time t ¼ 2Td [Fig. 2(c)]. The Fourier transform has the
strongest peak near k ¼ π=ð2dÞ, in agreement with pre-
diction (4) for the random-phase interference. This means
that the distant clouds mostly contributing to the interfer-
ence are uncorrelated.
The correlation length may be estimated from the data of

Figs. 2(b) and 2(c). Taking that the initial molecular wave
function is a Gaussian with rms half width

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2MωzÞ

p
and assuming its free expansion, one finds that by t ¼ Td
each cloud spreads to the rms half width of 8 μm, while at
t ¼ 2Td the half width is 16 μm. Therefore, the correlation
length is 15– 20 μm. The precision may be improved with
an advent of a more quantitative model. A much more
distant breakdown of correlation may be measured in
principle, though this would require a large interference
time t.
In conclusion, in an infinite chain of Bose condensates

with random phases, a spatial order forms as a result of
interference. The spatial period appears shortly after the

FIG. 5. Interference at t ¼ Td of a chain with a partial phase
disagreement between the adjacent condensates: image n2ðx; zÞ
(left) and the respective Fourier transform jñ1ðkÞj (right). Fit for
finding the centers of the phase-randomization-related peaks is
shown as the red curve.
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onset of the expansion and grows linearly with time. For
partially correlated phases such interference combines with
the Talbot effect. The interplay between these two types of
the interference may be used for measuring the phase
difference between the adjacent condensates as well as for
measuring the correlation length. These effects may be seen
in lattices with other periods d since d is not limited to any
particular range both in the quantum Talbot effect and the
random-phase-interference model of Eqs. (2)–(4).
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