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We encode the sequence of prime numbers into simple superpositions of identical waves, mimicking the
archetypal prime number sieve of Eratosthenes. The primes are identified as zeros accompanied by phase
singularities in a physically generated wave field for integer valued momenta. Similarly, primes are
encoded in the diffraction pattern from a simple single aperture and in the harmonics of a single vibrating
resonator. Further, diffraction physics connections to number theory reveal how to encode all Gaussian
primes, twin primes, and how to construct wave fields with amplitudes equal to the divisor function at
integer spatial frequencies. Remarkably, all of these basic diffraction phenomena reveal that the naturally
irregular sequence of primes can arise from trivially ordered wave superpositions.
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We may construe the distribution of primes as a puzzle in
physics. Can the seemingly random yet highly orchestrated
prime number distribution correspond to states of a
physical system [1]? Tentative affirmations have arisen
from research into connections between physics and
number theory, particularly via the Riemann zeta function
[2]. Building upon Euler’s connection between generalized
harmonic series and products over primes, Riemann
described a Fourier-like analysis to synthesize the prime
counting function [3]. Hinging upon this construction is the
placement of nontrivial zeros of the associated zeta func-
tion, which remains elusive [4].
Diverse studies have revealed the “physics of the

Riemann hypothesis,” ranging from classical [5] and
quantum billiard balls, quantum scattering, and bound
states to statistical physics, condensed matter, and more
[2]. Notably, Berry and Keating related the zeros of the
Riemann zeta function to eigenvalues in wave systems with
classically chaotic trajectories, speculating on the centrality
of a simple classical Hamiltonian [6]. This approach was
recently exploited by studying a non-Hermitian quantiza-
tion of a Hamiltonian system with real eigenvalues, defined
by a postulated maximally broken parity-time symmetry, to
imply validity of the Riemann hypothesis [7].
Diffraction physics is also rich in number theory con-

nections such as Cantor set fractals arising from solitons in
nonlinear optical fibers [8]. The discovery of complex
exponential Gauss sums in the fractional Talbot effect,
which arise in analytic number theory, is particularly
pertinent [9,10]. Integer factorization was recently achieved
in a wave-optic experiment exploiting the Talbot effect
[11]. Similarly, approximations to Thomae’s “ruler func-
tion,” an exemplary pathological function of real analysis
[12], have been measured in visible light optics [13].
Factorization of a composite number using Gauss sums
is also possible using Young’s N-slit diffraction [14] and

has been demonstrated in Michelson interferometer experi-
ments [15]. For an initial wave with Fourier transform
proportional to the Riemann zeta function on the critical
line, Berry has constructed far-field radiation patterns with
side lobes separated by the Riemann zeros [16,17].
In this Letter we are interested in whether simple wave

superposition can give rise to the prime number sequence,
in the absence of dynamical chaos or dedicated factoriza-
tion checks. We show that basic diffraction can sieve all
multiples of composite numbers and thereby holographi-
cally encode the sequence of primes into a propagating
wave field. As such, these symmetric superpositions
provide insights behind the orchestrated irregularity of
the prime number sequence. Since the naturally diffracted
fields are not defined by an algorithm, there are no
sequential parameter adjustments and we do not exploit
Gauss sums for factorizing specific composite numbers.
Our construction is not based upon the Riemann zeta
function or the Riemann hypothesis. The simplicity of this
diffraction approach is exemplified by readily encoding
other important sequences into propagating wave fields,
such as Gaussian primes, square-free integers, twin primes,
and so on, as explained hereafter.
Wilson’s theorem, that a prime p divides ðp − 1Þ!þ 1

[3], could be employed to design a field with amplitude
cos½πðx − 1Þ!=xþ π=x�, the integer floor of which pro-
vides an indicator function for primes over integer x
positions. While oscillatory, the construction is nonetheless
contrived. A step further could be to consider the productQ

n¼2sincðπx=n − πÞ, which identifies all composite inte-
ger (nonprime) x as a zero, since each sinc factor eliminates
multiples of all but one integer of interest. Though based
upon single-slit diffraction, it is difficult to envisage an
experimental implementation of this series. We shall
instead consider much simpler wave superpositions,
which could be realized in an experiment—essentially
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the opposite of the sinc idea, whereby composites are
discarded by removing zeros in the wave field.
Suppose a superposed set ΨNðrÞ of N × N identical

scalar wave sources is located in the x–y plane, with each
source defined by wave function ψðrÞ at position rj ¼
ðxj; yjÞ; here the optic axis is along the z direction. Far-field
diffraction of ΨNðrÞ can be written as the Fourier transform
of ψðrÞ convolved with a set of Dirac deltas δðr − rjÞ,
i.e., Ψ̂NðqÞ ¼ F½ψðrÞ � Σjδðr − rjÞ�, where the spatial fre-
quency or momentum is denoted by q ¼ ðqx; qyÞ. For an
N × N diffraction grating with xj ¼ ½j − ðN þ 1Þ=2�=N
(for j ¼ 1; 2; 3;…; N), in dimensionless units, and likewise
for the y positions, the far-field wave is proportional to

Ψ̂NðqÞ ¼ ψ̂ðqÞ sinðπqxÞ sinðπqyÞ
sinðπqx=NÞ sinðπqy=NÞ ; ð1Þ

where ψ̂ðqÞ ¼ F½ψðrÞ� is the Fourier transform of ψðrÞ.
For ideal pinholes, ψ̂ðqÞ tends to a constant and Ψ̂Nðqx; 0Þ
or Ψ̂Nð0; qyÞ then has form matching one of the graphs in
Fig. 1 for a given N.
Inspection of Fig. 1 shows that Ψ̂NðqÞ ¼ �N when qx

or qy is a multiple of N; the wave amplitude is otherwise

zero at all other integer q values. This is consistent
with l’Hôpital’s rule, which yields the limiting value
Nð−1Þqxð1þ1=NÞ, for integer qx divisible by N when qy is
zero and vice versa. Along either q axis, Eq. (1) can hence
be viewed as a ruler for discrete momenta, with nonzero
markings at integer multiples of N. Superposing many
different Ψ̂NðqÞ over a range of N values creates moiré
patterns at integer momenta, since the amplitude is only
nonzero at these points for periodic multiples of each N.
This is similar to Eratosthenes’s scheme for eliminating
composite numbers: if the natural numbers are associated
with discrete momenta, nonzero amplitudes along either
of the q axes indicate that a trial integer momentum of
interest is composite. Closer correspondence is assured if
additional zeros can be inscribed in each Ψ̂NðqÞ at qx ¼ N
or qy ¼ N, for then a candidate prime q location, on the
particular q axis, remains zero if the momentum q is not
divisible by any of the N in the sum over all Ψ̂NðqÞ.
Such additional isolated zeros can be incorporated if the
ψðrÞ sources are simple modes of the paraxial Helmholtz
equation.
Each temporal frequency ω component Ψωðr; zÞ ¼

expð2πikzÞψðr; zÞ of a paraxial scalar wave satisfies the
paraxial Helmholtz equation f∂2

x þ ∂2
y þ 2ik∂zgψðr; zÞ ¼

0 [18], where k is the wave number. Among plane waves
and other forms, exact solutions of this equation are given
by the Hermite-Gauss modes, which are also eigenfunc-
tions of the quantum harmonic oscillator. In the x–y plane,
up to a complex constant, the (0,0), (1,0), and (0,1) order
modes can be written as ψ00ðrÞ ¼ expð−r2=σ2Þ, ψ10ðrÞ ¼
xψ00ðrÞ, and ψ01ðrÞ ¼ yψ00ðrÞ, respectively, where r ¼ jrj
and σ is the beam waist at the plane z ¼ 0. A superposition
of (0,2) and (2,0) modes gives the quadratic form
ψQðrÞ¼r2ψ00ðrÞ. Any of these waves in the limit σ→∞
would suffice for this discussion, which correspond to
“polynomial waves” [19,20].
For bounded fðxÞ in the implicit Fourier convention

of Eq. (1), the relation F½∂xfðxÞ�¼2πiqxF½fðxÞ� holds.
Similarly, F½xfðxÞ�¼i=ð2πÞ∂qxF½fðxÞ�. As such, F½ψ10ðrÞ�
contains a zero at the qx origin, which can be shifted along
qx by N units of momenta after applying a linear phase
ramp expð2πixNÞ to tilt the N × N wave array. Equivalent
remarks hold if the identical wave sources are instead
chosen to be F½ψ01ðrÞ�. Phase ramps for each N × N array
could be difficult in an experiment but can be avoided by
using the second-order mode sources, since F½ψQðrÞ� con-
tains a ring of zeros in the far-field, due to second-order
gradients arising from the quadratic term r2. By careful
choice of σ, the ring radius can be set toN units of momenta.
The classical Eratosthenes algorithm iteratively elimi-

nates composites by crossing out multiples of primes
identified at each step. Our wave-optical approach auto-
matically sieves all integer multiples and is hence less
efficient. Nonetheless, Eq. (2) represents a close analogy,

FIG. 1. Symmetric sets of waves encode the prime-number
sieve of Eratosthenes. Diffraction of identical wave sources
arranged in simple N × N grids creates interference patterns
with zeros at all integer momenta q, except at multiples of N,
where the amplitude equals �N. Hermite-Gauss mode sources
(shown in green) can be used to place additional zeros at one or
both of the red circles. Superposition then encodes primes as
zeros in the total wave amplitude for integer q.
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Ψ̂MðqÞ ¼
XM

N¼2

ψ̂NðqÞ
sinðπqxÞ sinðπqyÞ

sinðπqx=NÞ sinðπqy=NÞ ; ð2Þ

where ψ̂NðqÞ ¼ ð−1ÞNψ̂ðqx − N; qyÞ, for a phase shifted
array when each source is of type ψ10ðrÞ, or ψ̂NðqÞ ¼
ψ̂QðqÞ for the second-order mode sources of width σN
without a phase ramp. Using these superpositions, zeros in
the far-field pattern at integer momenta on the qx, qy axes
indicate primes for integers jqj ≤ M2, with nonzero ampli-
tudes specifying composite numbers. Sifting occurs indefi-
nitely beyond jqj ¼ M2, but some composite momenta will
then also correspond to zero amplitudes. For a given signal-
to-noise ratio, this sifting is physically limited by finite
energy, giving rise to diminishing wave amplitudes at
large jqj.
Displaying the square root of the amplitude, Fig. 2 shows

some examples of Eq. (2), with ψ10ðrÞ and σ ¼ 0.05,
M ¼ 31, producing Fig. 2(a) and the corresponding trace
along qy ¼ 0 in Fig. 2(c). The ring of size jqj ¼ 7 in
Fig. 2(b) shows an example of F½ψQðrÞ� for σ ¼ 1=ðNπÞ,
where N ¼ 7, and Fig. 2(d) shows a horizontal trace over
discrete qx computed from Eq. (2) using ψQðrÞ sources
with the sum maximum M ¼ 31. Note the almost zero
values for even integers, nonintegers, and qx ¼ 25 in
Fig. 2(c), which is masquerading as a possible prime.
The amplitude at qx ¼ 25 evaluates to the tiny value of
24=ð25e25π3Þ but is strictly zero for prime qx. These
observations reveal important physical limitations for
realizing wave-optical prime sieves. Similar remarks hold

for the discrete plot in Fig. 2(c), for an unshifted ψ̂QðqÞ
based source spectrum.
Simpler wave-optical prime sieves are possible if

mimicry of Eratosthenes’s algorithm is jettisoned. Given
that the trigonometric ratios in Eq. (1) provide the essential
divisibility tests for qx or qy, it is instructive to devise more
basic complex exponential sums over ordered rational
frequencies. To this end, consider

ŜðαÞ≡XM

N¼1

XN

j¼1

e2πiαj=N ¼
XM

N¼1

ð−1Þαð1þNÞ=N sinðπαÞ
sinðπα=NÞ ;

ð3Þ

where α and j=N could correspond to respective momen-
tum and position or vice versa. Note that the sign alter-
nation for α divisible by N cancels that of the sine term;
hence, Eq. (3) is a simpler one-dimensional version of
Eq. (1), which can be furnished with a given source term
ψðαÞ through convolution, if relevant. From a diffraction
physics perspective, the inner sum in Eq. (3) can be viewed
as a phase singularity [21] for integer α not divisible by N,
since the phasor sum inscribes a circle as a regular polygon
in the Argand plane, winding α times about this polygon.
When N divides α, the inner sum instead represents a plane
wave of amplitude N, since all phasors add along a line in
the Argand plane. As with all sums here, only the real part
of the superposition is of physical significance [22].
The number-theoretic properties of Eq. (3) are interesting.

The inner sum evaluates toN for α divisible byN, and is zero
for all other integer α. ŜðαÞ is therefore the divisor function
σ1ðαÞ from number theory, describing the sum of all integers
that divide integer α. Equation (3) thus represents another
type of sieve, for which candidate prime α are identified as
the fixed points ŜðαÞ ¼ α. An interpretation in terms of
Thomae’s ruler function [12] can also be made for ideal
pinholes, as explained in the Supplemental Material [23].
In short, the distribution of the primes is given by the fixed
points in the spectrum of Thomae’s function for integer α.
Superpositions such as ŜðαÞ can be realized in simplified

diffraction experiments. For example, identifying α0 with
position x, the set of wave sources sampled by the 2D Dirac
distribution

PP
δðx − j=NÞδðy − NÞ produces a far-field

diffraction pattern matching Eq. (3), along the qx axis
for qy ¼ 0. Extra j ¼ 0 terms were included in Eq. (3) for
aesthetic purposes to plot this distribution as the set of black
squares in Fig. 3(a), where the numbers indicate the value
of N in the sum (y points down the page), which ranges up
to maximum M ¼ 11 (cf. the set of natural line angles
in the discrete Hough transform [24]). Figure 3(a) alone
reveals the asymptote towards Thomae’s function in the
effective superposition, since there are roughly 1=2 as
many vertically aligned sources in the middle than the
outermost columns, 1=3 as many sources at either 1=3 or
2=3 of the horizontal distance x, and so on. The Fourier

FIG. 2. The prime sieve of Eratosthenes realized with super-
posed Hermite-Gauss modes. (a) Square root of the far-field
amplitude for phase-shifted first-order modes, with prime number
zeros indicated as red dots for the corresponding jqj ¼ q trace
from the origin along qy ¼ 0 in (c). (b) Ring of zeros for a
quadratic second-order mode with dimensionless radius q ¼ 7,
superpositions of which yield the prime sieve in (d), for integer q
along either q axis.
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transform of this distribution of ideal pinholes was com-
puted and M þ 1 was subtracted from the wave amplitude
to account for the additional sources arising from the j ¼ 0
terms. Further division by qx created the plot of normalized
wave amplitude over discrete momenta q≡ qx (at qy ¼ 0)
shown in Fig. 3(b), where the red dots are primes. As
expected, the unity values arise from fixed points in the
normalized divisor function σ1ðqÞ=q up until q ¼ 11.
For this chosen value of M, primes are also uniquely
identified by zeros in the wave field at integer q up until
q ¼ M2 ¼ 121, since there are no terms in the effective
ŜðqÞ sum to contribute nonzero amplitude at discrete
momenta q. Beyond this q, composite momenta can also
give rise to zeros and the sieve no longer faithfully identifies
candidate prime q.
Small variations of Eq. (3), such as the inclusion of source

types other than ideal pinholes, index changes, or reinter-
pretations of α, can be used to adapt such wave sieves for
other number-theoretic wave fields of interest. For example,
any integer can be represented as a unique product of
squared and square-free integers, where a square-free integer
contains no squares in its prime factor decomposition.
By considering only rows N ¼ 4; 9;… in Fig. 3(a), the
partial set of source locations then sifts integer momenta by
the squares of all primes, resulting in zeros in the far-field
diffraction pattern at integer momenta corresponding to all
square-free numbers [25].
An acoustic example is a vibrating pipe open at both

ends. With α identified as position x along the pipe, the real
part of Eq. (3) describes the longitudinal wave displace-
ment as a set of modes cos½πxqjNM=ð2LMÞ� for a pipe of
length LM ¼ LCMð1; 2; 3;…;MÞ and particular harmonics
qjNM ¼ 4jLM=N, where LCM is the least commonmultiple.
At time t ¼ 0 for x ≤ M, fixed points of the longitudinal
wave displacement identify prime x. ForM < x ≤ M2, zero
wave displacement indicates prime x. Dynamics can be
included with, say, a linear dispersion relationship. The
displacement x at a pipe end would be prime at prime
instances of time, in units scaled by the dispersion relation.
Other connections between basic diffraction physics and

number theory are possible with further variants of Eq. (2)

or Eq. (3). Two final number-theoretical wave fields are
worth discussing—a superposition containing the set of
Gaussian primes and another that sieves twin primes.
For integers a and b, the Gaussian integers aþ ib are

complex numbers which can be uniquely factorized by other
Gaussian integers known as “Gaussian primes” that have
norm a2 þ b2 equal to a prime number [4].When α in Eq. (3)
is interpreted as r2 ¼ x2 þ y2, this superposition represents a
sum of paraxial spherical waves on the optic axis (z ¼ 0),
which automatically sifts Gaussian primes for integer x and
y. The Gaussian sieve continuum in Fig. 4(a) was computed
from Eq. (3) up to M ¼ 23, plotting the square root of the
intensity. The field is most intense at the origin, since all
sources lie on the optic axis. The bright squares in Fig. 4(b)
are the same data, where each square shows the fixed points
of the wave at integer ðx; yÞ positions, corresponding
precisely to all Gaussian primes. In experiment, the various
j=N phase curvature factors could arise fromdifferent source
locations on the optic axis by extending Eq. (3), as shown in
the Supplemental Material [23].
Any of our sieves can be applied concurrently to remove

multiple distributions of integers, using the superposition
principle. For example, twin primes were sieved by adding
Eq. (2) to an identicalwave shifted alongqx by 2 integer units
of momenta. The wave ψ̂NðqÞwas set to unity for simplicity
to yield the square root of intensity shown in Fig. 4(c), with
M ¼ 62 in Eq. (2). The corresponding graph over discrete
qx in Fig. 4(d) was computed after normalizing the wave
magnitude by q2x þ ðqx þ 2Þ2 and subtracting one, such that

FIG. 3. (a) Primes encoded in a single symmetric aperture.
(b) Normalized far-field diffraction from pinholes at the square
locations in (a) identifies primes as unit amplitudes along the qx
axis for momentum jqj ¼ q ≤ 11, beyond which zeros uniquely
identify primes until q > 112.

FIG. 4. Gaussian and twin primes. (a) The magnitude of Eq. (3)
for α ¼ r2. (b) Fixed points in (a) uniquely identify primes of
form x2 þ y2. (c) Twin primes sieved by superposing diffraction
patterns separated by 2 units of momenta along the qx axis using
Eq. (2), plotted as the square root of the intensity. (d) Normalized
plot over discrete q along the qx axis, where the first of each twin
prime is uniquely zero, shown in red.

PHYSICAL REVIEW LETTERS 122, 090201 (2019)

090201-4



twin primes appear as unique integer zeros. Generalizations
to sieve other prime gaps, tuples, etc. are possible. While
finite energy constraints are fundamental, technical issues
such as nonparaxial diffraction can be overcome as Eq. (3)
can be viewed as a simple sum over plane waves.
In conclusion, a wide variety of prime number sieves has

been demonstrated using simple wave superposition.
Examples were chosen to easily locate prime numbers in
frequency, space, and time, placing constraints on the
architecture of the source distributions. Given natural
phenomena such as beats and modes, wave fields are
littered with integers in general, so perhaps the set of prime
numbers implicitly resides within more general wave-field
superpositions.

T. C. P. acknowledges useful discussions with A. C.
Y. Liu.
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