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In nonexcitable cells, global Ca>* spikes emerge from the collective dynamics of clusters of Ca**
channels that are coupled by diffusion. Current modeling approaches have opposed stochastic descriptions
of these systems to purely deterministic models, while both paradoxically appear compatible with
experimental data. Combining fully stochastic simulations and mean-field analyses, we demonstrate that
these two approaches can be reconciled. Our fully stochastic model generates spike sequences that can be
seen as noise-perturbed oscillations of deterministic origin, while displaying statistical properties in

agreement with experimental data. These underlying deterministic oscillations arise from a phenomeno-

logical spike nucleation mechanism.
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The intracellular calcium ion Ca?* is a major second
messenger involved in many signaling pathways [1]. On
average, the cell tends to maintain its cytosolic Ca’*
concentration [Ca®*] to a low basal value of about 100 nM,
but transient rises of [Ca’*] can occur upon stimulation
of the cell by an external agonist. The frequency and
amplitude of these signals encode information about the
nature and intensity of the physiological response [1].

In this Letter, we focus on variations of [Ca’*] initiated
by an increase in the concentration of inositol 1,4,5-
trisphosphate (IP3) and involving Ca?>* exchanges between
the cytosol and the endoplasmic reticulum (ER). These
exchanges are ensured by dedicated pumps and channels
located in the membrane of the ER. The ER is able to
sequestrate Ca’* via endoplasmic reticulum calcium
adenosine triphosphatases (SERCA pumps), while IP;
receptor (IP;R) channels enable Ca’>* release from the
ER to the cytosol. IP;Rs are activated at low [Ca’*]
(resulting in Ca’*-induced Ca’>* release, or CICR), but
are inhibited at high [Ca’>"] [2]. TP;Rs typically form
multichannel clusters of 300-800 nm in width [3.4],
separated by distances ranging from 1 to 7 um [5,6].

The combination of CICR and Ca?* diffusion leads to
complex collective behaviors at different scales. The
concerted release of Ca’* through several channels in a
single cluster can lead to a local rapid increase of [Ca®*],
which is known as a “puff.” Such subcellular Ca’>* signals
occur randomly, last less than 1 s, and have a spatial extent
of a few microns [3-6]. At the cell level, the coupling
of clusters can result in the emergence of global [Ca’*]
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increases, invading the whole cell and lasting at least a few
seconds. These global Ca’" events are called “spikes”
[7,8]. While the mean interpuff time interval (IPI) usually
does not exceed 5 s, the interspike time interval (ISI) ranges
between 20 s and several minutes [5,8]. This difference
points to the existence of different types of dynamics for the
termination of spikes and puffs.

The statistical distributions of IPIs and ISIs are different.
On one hand, IPIs are essentially random events and obey
Poisson distributions with a mean mainly determined by
the inhibition and reactivation timescales of IP;Rs [9]. The
dynamics of IP;Rs clusters is thus intrinsically stochastic
and aperiodic [8,10]. On the other hand, ISIs generally
include a nonstochastic, absolute refractory period (7 ;,)
that cannot exclusively be accounted for by the inhibition
and recovery of channels alone and more likely results
from the existence of a deterministic global process related
to IP; metabolism [11,12]. ISIs can be significantly larger
than T,.;,, which would not be the case if spikes were
purely deterministic processes. ISIs are thus often divided
into deterministic and stochastic (7g,.,) contributions,
ISI = T in + Tsioch- Experiments show that T, creates
a linear relation between the standard deviation of the ISI
(o1s1) and their mean (7',,),

o181 = a<Tav - Tmin)v (1)
where the slope a varies according to the cell type and the
agonist used to induce spikes [11,13].

Cell-level spikes can be surprisingly well described

either by deterministic models with oscillatory dynamics
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FIG. 1. Model describing the dynamics of a cluster of IP;Rs
from Calabrese et al. [22].

[14] or by stochastic models, based on the coupling of
clusters whose local dynamics is aperiodic [15] or on
intensity functions describing spikes from a top-down
perspective [16]. Experiments [5] strongly suggest that
global spikes and waves emerge from a nucleation mecha-
nism, which is reproduced by deterministic models con-
sidering excitable clusters [17]. There is thus no consensus
about the nonlinear behavior underlying global spikes [18].
In this Letter, we propose a unifying heuristic model, based
on a nucleation mechanism. Combining fully stochastic
simulations and bifurcation analyses of this model, we
generated spike sequences corresponding to oscillations in
the mean-field limit and displaying statistical properties
compatible with experimental data.

The cell is modeled as a two-dimensional system with
periodic boundary conditions, representing a layer of cytosol
above the surface of the ER. The system is discretized in N
square compartments of side length Ax and volume V.,
where the [Ca?*] is considered to be homogeneous, and
some of these compartments contain clusters of IP;Rs.
The stochastic behavior of individual channels and the
associated steep Ca’>" gradients were explicitly described
in many previous models, but such simulations were
computationally expensive and called for approximations
[19-21]. Rather than simulate individual IP;Rs, we based
our approach on an extension of the phenomenological
cluster model (Fig. 1), developed by Calabrese et al. [22] and
validated against experimental observations.

Each cluster as a whole can be in four different states: an
open state O, a closed state C, or one of the two inhibited
states I; and I,, and transitions between these states take
place according to the scheme shown in Fig. 1. Ca?*
release exclusively occurs when the cluster is in state O. In
order to model the CICR mechanism, the transition
probability from C to O depends on [Ca®*], which ensures
that the probability to trigger cluster activity increases with
the cytosolic Ca2* content [23]. When the cluster is in state
O, two different pathways are available. The cluster can
become rapidly inhibited to reach state /,. The character-
istic time of the I, —» C transition, 1/k,.~0.5s, is
compatible with the recovery time of a cluster after a puff.
Once in state /,, the cluster can recover and come back to
state C. At high ambient [Ca?>*]—and hence very high local
[Ca>*]—the cluster can also become inhibited in state I,

TABLE I. Simulations parameters.

keo [5-20] uM~! 57! C—->0

k()il 0.05 ﬂM_3 S_l 0 — ]1

koin 40 s7! 0-1

kiic 0.005 s7! I, - C

kiZC 2 S_1 12 - C

v, [0.7-0.9] uM s~ Maximal rate of SERCA

K, 0.1 uM SERCA binding constant

[Ca®"], 0.04 uM Basal [Ca*]

D 40 pm?s~! Ca’* diffusion coefficient
Ax 0.5 ym Length of a compartment
V., 10716 L Volume of a compartment

from which recovery is slower than from /,. This
assumption is based on the observation [5] that when puffs
have contributed to the onset of a global Ca’>* spike, puff
activity is reduced. In the model, the dependence on
[Ca>*]? in the probability of O — I, is hence combined
to a long recovery time (see Table I).

Considering that open clusters release Ca’>* at a constant
rate ¥ [24], the amount of Ca’>* released depends on the
time spent by clusters in state O, which is ruled by the
kinetic scheme described above. We evaluate X as
Y = I 4 x 107%/2V F, where I = I(1 — b) is an effec-
tive current accounting for the trapping of a fraction of ions
by buffers, F = 96485 Cmol~! is the Faraday constant
and the factor 107° ensures that /. is in picoamperes while
¥ is in uMs~!. To be consistent with a current I between
0.12 and 0.95 pA, as reported by Bruno et al. [20], and
for a buffering b of 98% and V. = 107! L, X ranges from
124 to 984 uMs~! depending on the simulated stimula-
tion level.

Contrary to the majority of previous models for global
Ca’* signals, we simulated the dynamics of the system
with a fully stochastic approach based on Gillespie’s
algorithm [25] (see Supplemental Material [26]). Fluxes
associated with leak from the ER and uptake by SERCA
pumps are also described as stochastic processes ruled
by well-established kinetics, whose associated parameters
are also given in Table I. Stochastic diffusion is introduced
as a jump process between two neighboring boxes of the
system.

We thus included a total of nine different stochastic
processes in our description: the five transitions relative
to cluster states, Ca>* fluxes due to leak from the ER and
uptake by SERCA pumps in each compartment, Ca’>*
diffusion between compartments, and release of Ca>* from
open clusters. The propensity functions associated with
these processes are given in the Supplemental Material [26]
(Table S1).

Experimentally, puft sequences are recorded in the pres-
ence of EGTA, an exogeneous slow buffer that prevents
diffusion-mediated coupling between clusters [8]. To mimic
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FIG. 2. (a) Puff sequence showing the local [Ca®*] averaged in
1 fL around an isolated cluster, corresponding to experimental
observations in the presence of EGTA. Iyp =35 uMs™!
(£ =500 uMs~! and p. = 0.01). (b) Spike sequence showing
the global [Ca®*] averaged over the whole system, corresponding
to experimental observations in the absence of EGTA. Xy =
50 uMs~! (£ =500 uMs~! and p. = 0.1). The mean ISI is
(102.1 4 50.4) s. (a),(b) The whole system size is 5 x 5 um?,
keo =20 uM~'s™! v, = 0.9 uMs™!, and the other parameters
are given in Table L.

such conditions, we considered a 0.5 x 0.5 um* single
cluster located in the middle of a 5 x 5 ym? system. The
resulting dynamics is characterized by small amplitude
bursts of [Ca®"] that resemble the experimentally observed
puffs [see Fig. 2(a)]. Puff amplitudes were calculated as the
maximal average [Ca®*| reached during a puff in a volume of
1 fL around the cluster, i.e., in the compartment containing
the cluster and its eight first neighbors [19]. As shown in
Table 11, amplitude, IPI, and puff duration statistics obtained
for £ = 500 uM s~! are consistent with those reported from
experiments [6,9,27].

TABLE II. Mean and standard deviation of the [Ca®*] ampli-
tude measured in 1 fL around the cluster (A), IPI, and full
duration at half maximum amplitude (FDHM).

This work Experiments Ref.
A(uM) 0.588 £ 0.211 0.216 +0.04 [27]
IPI (s) 1.94+1.2 1.50 £ 1.37 [9]
FDHM (ms) 40 45 [6]

In order to gain insight into the nonlinear dynamics
underlying this behavior, we turned to a deterministic
version of the model. We considered an ensemble of
clusters experiencing the same average [Ca’'] and inter-
acting globally via this effective concentration field. With
such an approach, the Ca®>* dynamics in the intercluster
spaces is not described explicitly, but clusters are assumed
to be distributed on the membrane of the ER according to a
given cluster density p, = N./N,, where N_. is the number
of clusters in the system. We considered p. = 0.1, which
corresponds to an average intercluster distance of 1 ym and
is consistent with experimental data [6].

Evolution equations for [Ca**] and for the fraction of
clusters x = Ny/N, in state X = O, I, I,, or C can be
easily derived in this mean-field approximation (see
Supplemental Material [26]). The deterministic dynamics
of the system is ruled by the following evolution equations:

d
= ko [Ca?*) (1= 0= iy = i) = ko [Ca®* o = 0.
di .
d_tl:koil[ca2+}30_kilcllv
di .
d_;:koiZO_kiZCIZv

d[Ca*t

[dt ]:ZMFO_JSERCA+J1eakv (2)

where Xyp = Zp,. is a rescaled release rate. In these
equations, only the fractions o, i;, and i, appear because
of the conservation relation o+ i; + i, +c=1. The
SERCA and leak fluxes are given by

; U,,[CaH]Z
SERCA — T~ 27112 | 2
Ca® ]2 + K2

and

v,[Ca*" ]}
[Ca**]} + K3

Jieak =

respectively, where [Ca®*], is a constant (Table I).

As shown in the bifurcation diagram (Fig. 3), the
system admits a single low [Ca®*] stable steady state for
small values of Zyr. These parametric conditions coincide
with those for which puffs were observed in the afore-
mentioned stochastic simulations (for which Xyr =
500 x 0.01 =5 uMs~!). For large values of Zyp
(>75 uMs7!), one finds a stable steady state with high
levels of [Ca®*], in agreement with experiments [2]. For
intermediate values of Xyg, the mean-field approach
predicts the development of oscillations in a domain
bounded by Hopf bifurcation points HB1 and HB2
(Fig. 3). The period of these oscillations is in the range
of the mean ISIs reported in the literature [11]. This
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FIG. 3. Bifurcation diagram showing the stationary [Ca?*] (in
black) and the maximal and minimal [Ca’>*] reached during
oscillations (in red) for k., =20 uM~'s™!, v, = 0.9 uMs~!,
and the other parameter values given in Table I. Stable and
unstable branches are in plain and dashed lines, respectively. HB
and LP stand for Hopf bifurcation and fold, respectively.

suggests that the Ca’>* spikes observed experimentally
could correspond to oscillations of the limit-cycle type,
which would emerge whenever p,. or £ are increased.
We then performed stochastic simulations to track the
possible emergence of spikes in multicluster systems.
Starting from the puff regime, we ran stochastic simulations
for gradually increasing values of p.. By doing so, we
enhanced the coupling strength between the clusters
and increased Xyp to get closer to the parametric
conditions leading to oscillations in deterministic simula-
tions. Clusters of 0.5 x 0.5 yum? were randomly distributed
ina 5 x 5 um? system according to p,., with the same other
parametric conditions as in the puffs’ simulations. In this
case, [Ca’**] was averaged over the whole system. For
Tyve < 25 uMs~!, the average [Ca’*] remains close to the
basal state and small peaks, corresponding to puffs at the
local scale, are observed. Beyond this threshold, the global
dynamics transforms into global spikes with an amplitude

of atleast 1 uM, which is close to the value predicted by the
mean-field model. A typical sequence of such spikes is
shown in Fig. 2(b). Similar to what is observed in an
experimental time series [5], rapid puff activity is visible
between spikes. The o1g;—T,, diagram shown in Fig. 4(a),
where each point corresponds to a different realization
performed with the same set of parameter values, suggests
that a linear relation exists between the standard deviation
and the average ISI of the Ca’>* spikes. Additionally, the
line and the x axis intersect at a positive value. These
statistical properties of the simulated spikes at Zyg >
HB1 are consistent with those of experimental signals
[11,21]. In a small range of values of Xyr below HBI
(15.5 uMs~! < Zyp), spiking can also occur but with a
significantly higher coefficient of variation (CV) (see
Fig. S1 in Supplemental Material [26]). This agrees with
the CV measured in hepatocytes stimulated at subthresh-
old concentrations of hormones [28].

We next investigated the Ca’>* spiking dynamics for
other parametric conditions leading to oscillations in the
mean-field approximation. Spike trains were first obtained
with random values of Xy (with HB1 < Zyz < HB2) to
simulate various IP; concentrations. As reported in [21],
the corresponding o1g—7,, points are positioned along
the same straight line (see Fig. S2 in the Supplemental
Material [26]). Besides, the slope « is only slightly affected
by variations of parameters like k., [Fig. 4(b)] and v,
[Fig. 4(c)], which is consistent with experimental results
showing the robustness of a against various pharmaco-
logical perturbations, notably inhibiting the SERCA pumps
[I1]. The slight increment of the slope when k., is
decreased [Figs. 4(a) and 4(b)] can be attributed to a
decrease in the ratio between the rates of “firing” and of
recovery from inhibition [29].

To check that the Ca’>* spikes analyzed in Fig. 4
correspond to the noise-perturbed limit-cycle oscillations
predicted by the mean-field analysis, shown in Fig. 3, we

250 - - - - 300 T T 150 T T z
0, =4.9722+0.74983 T,, (a) — 0, =33.1124+0.79148 T, (b) ——0,=9.4926+0.75376 T,, (©),-
200} = = ~01g=Tw o] 2507-- g RIS 0T
200 100
@ 150 .
% 150
© 100t
100 50+t
501 50
0 0 % 50 100 150
Tav (s)
FIG. 4. o) — T, plot obtained by numerical simulations with X = 500 uMs~', p. = 0.1 (average intercluster distance of 1 ym),

and (a) ko, =20 uM~'s" and v, =0.9 uMs™', (b) k., =5 uM's7! and v, =0.9 uMs™', and (¢) k., =20 uM~'s7" and
v, =0.7 uM s~!. The other parametric values are given in Table I. Each dot corresponds to a given spike sequence of at least ten spikes
and the solid line is the linear fit through these points. 7', is equal to (a) 6.6 s, (b) 41.8 s, and (c) 12.59 s. The dashed line corresponds to

the case a = 1.
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FIG. 5. Comparison between the deterministic period (plain
line) and the average ISI (dots) as a function of Xy in the
range between HB1 and HB2. Black and red dots correspond
to p. =0.1 and p,. = 1.0, respectively. Error bars indicate
variations of +oyg;.

compared the deterministic periods and the ISI distributions
in the stochastic simulations for the whole range of Xy
values between HB1 and HB2 (Fig. 5). For the cluster
density used in Figs. 2(b) and 4 (p. = 0.1), the determin-
istic period indeed lies in the distribution of the ISL. As
expected from the conditions of validity of the mean-field
description, the agreement between the stochastic and
deterministic simulations improves as the effective cluster
density p,. increases (Fig. 5).

In conclusion, we showed through this phenomenologi-
cal model for spike nucleation that the deterministic
counterpart of spiking dynamics can be oscillatory. The
onset of stochastic spikes or mean-field oscillations is
controlled by the parameters affecting the spatial coupling
between the clusters, which is in agreement with exper-
imental data. Moreover, the fully stochastic version of this
model generates puff and spike sequences with realistic
timescales and statistical properties. The results presented
in this Letter thus highlight the compatibility of mean-field
limit-cycle behavior with stochastic nucleation mecha-
nisms, which tends to reconcile the current stochastic
and deterministic modeling approaches of Ca>* dynamics.
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