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The electrical σ and thermal conductivity λ of liquid iron are calculated with spin-polarized density-
functional-theory-based simulations over a significant pressure and temperature range using the Kubo-
Greenwood formalism. We show that a paramagnetic state is stable in the liquid up to high temperatures at
ambient pressure and that the discrepancy between experimental results and spin-degenerate simulations
for σ and λ of more than 30% are reduced to within 10% with lower values resulting from the spin-polarized
simulations. Along the 3700 K isotherm, we explore the persistence of magnetic fluctuations toward high
densities, and beyond 20–50 GPa the liquid becomes diamagnetic, which suggests the existence of a
continuous paramagnetic-to-diamagnetic transition. This transition exerts a significant influence on the
physical properties of liquid iron, especially on σ and λ, and is potentially of high relevance for dynamo
processes in Mercury and Mars.
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The understanding of electrical transport properties of
liquid metals has seen significant advances over the past
decade as an increasing number of studies employed the
Kubo-Greenwood formalism [1,2] on ionic configurations
from density-functional-theory-based molecular dynamics
(DFT-MD). This computational approach has successfully
been applied to aluminum [1,3–6], lithium [7], sodium [8],
molybdenum [9], copper [10,11], and iron [12,13].
Among those, the work on iron [12,13] and iron alloys

[12,14,15] has been of great interest in geophysics, as their
electrical (σ) and thermal conductivity (λ) play a significant
role in assessing the efficiency of magnetic field generation
and on the thermal evolution of Earth’s core [16,17].
Calculations for σ of liquid Fe and Fe-Si alloys show good
agreement with measurements from shock wave experi-
ments at pressures p > 100 GPa [18,19] and some static
experiments in the diamond anvil cell [20,21]. At lower and
especially at ambient pressure, Kubo-Greenwood values for
σ are significantly larger than experimental data [22–27].
This discrepancy can partly be attributed to the underlying
equation of state from the DFT-MD simulations that under-
estimates molar volumes at ambient pressure by as much
as 20% [15,28]. But even if evaluated at the correct density ρ
for ambient p, the difference in σ persists.
None of the DFT-MD or Kubo-Greenwood calculations

mentioned in the previous paragraph have considered spin
polarization, whereas a spin Hamiltonian model predicts
disordered local moments in Fe stabilized by entropy to
well above the melting temperature (TM) [29]. This model
even suggests that such a paramagnetic state persists to
Earth’s core conditions. The presence of local moments
gives rise to a spin-disordered resistivity contribution,

which was computed to be in the range of 100 μΩ cm at
ambient pressure above the Curie temperature [30] and
20 μΩ cm at conditions of Earth’s core for bcc iron [31].
Two observations are worth pointing out: (i) Resistivity
contributions due to electron-phonon scattering and spin
disorder are not additive [31]; i.e., Matthiessen’s rule does
not apply, although it has been used in the analysis of
resistivity data [32,33]; (ii) at ambient conditions, the
computed spin-disorder resistivity [30] reaches values
similar to the total measured resistivity [22].
Here we consider the influence of magnetism on elec-

trical conductivity for liquid Fe directly in DFT-MD and
linear response calculations for the Onsager coefficients
within the Kubo-Greenwood formalism: We account for
collinear magnetism in the electronic structure and, con-
sequently, ionic configurations, using spin-polarized DFT.
As Ruban, Belonoshko, and Skorodumova [29] have
shown for bcc iron at ambient p, the magnetic moments
resulting from such an approach are very similar to the
disordered local moments from the effective Hamiltonian.
We examine the influence of magnetism on both aspects of
the simulations separately, i.e., DFT-MD and the Kubo-
Greenwood calculations, to investigate their relative impor-
tance and assess differences to the previously published
results on liquid Fe.
The molecular dynamics (MD) simulations use forces

derived from finite-temperature (FT) DFT [34,35], on the
basis of the Born-Oppenheimer approximation. The FT-
DFT electronic structure calculations are performed within
a collinear formulation of spin states [36,37] and employ
the Perdew-Burke-Ernzerhof (PBE) [38] formulation for a
semilocal generalized gradient (GGA) corrected exchange

PHYSICAL REVIEW LETTERS 122, 086601 (2019)

0031-9007=19=122(8)=086601(5) 086601-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.086601&domain=pdf&date_stamp=2019-03-01
https://doi.org/10.1103/PhysRevLett.122.086601
https://doi.org/10.1103/PhysRevLett.122.086601
https://doi.org/10.1103/PhysRevLett.122.086601
https://doi.org/10.1103/PhysRevLett.122.086601


correlation functional. Simulations are performed with the
Vienna ab initio simulation package (VASP) 5.4.1 [39–41],
using the projector augmented wave (PAW) method and
the potential file [42,43] provided with VASP ([Ar]4s23p6

valence configuration, labeled PAW_PBE Fe_GW) for the
electron-core interaction. The plane-wave basis set is
expanded to a cutoff energy Ecut of 1200 eV, and electronic
states are calculated at the Baldereschi mean-value point
[44]. The cubic cell is set up containing 70 atoms with
periodic boundary conditions. With a Nosé-Hoover thermo-
stat [45,46], we generate a canonical ensemble in which
we run 2000–5000 time steps with a length of 2 fs after
equilibration. All choices for numerical parameters (poten-
tial, Ecut, particle number, reciprocal space sampling, time
steps, and total duration) are similar to those from previous
studies for liquid iron [12,13] and were confirmed to be
adequate by several test calculations with more stringent
settings.
The electronic transport properties are subsequently com-

puted using linear response theory (LRT) on the Kohn-Sham
states [2]. Respective formulas for σ and λ are given in
Supplemental Material [47], which includes Refs. [48–51].
These formulas are evaluated using ionic configurations
from theMD simulations, averaged over 20–50 uncorrelated
configurations per MD run. Numerical parameters for these
static FT-DFT calculations are checked as well and were
chosen identical to those from the MD simulations except
for Ecut, which is reduced to 400 eV. At least 5 eVof bands
with negligible occupation numberswere taken into account.
The broadening parameter of the delta function was set to
≈0.005 eV. Calculations are performed consistently either
spin polarized or spin degenerate for both MD and LRT,
unless explicitly noted otherwise. The accuracy of our
calculated values is 1%–2% for σ and 1%–4% for λ.
Consequently, the Lorenz number L [47] is calculated with
an accuracy of about 2%–6%. Supplemental Material [47]
contains a table with our numerical results.
The total magnetic moment in the simulation cell of the

DFT-MD simulations fluctuates around zero, characteristic
for a paramagnetic state in the absence of an external field.
The magnitude of fluctuations, illustrated by the square
of the individual magnetic moments (Fig. 1), decreases
systematically with both ρ and T. The most prominent
effect due to the presence of magnetic fluctuations in liquid
iron is therefore expected at low ρ and low T.
Local magnetic moments in the paramagnetic state can

affect conductivity in both parts of the computational
approach, i.e., DFT-MD and LRT. We consider the respec-
tive influences by a direct comparison of spin-polarized
and spin-degenerate calculations at ρ ¼ 6.75 g=cm3 and
T ¼ 2250 K (Fig. 2).
The pair correlation function gðrÞ of the spin-polarized

DFT-MD configurations reveals a slight shift of interatomic
distances to larger values and more pronounced maxima
and minima. The nearest neighbor distance, measured as

the first maximum in gðrÞ, is shifted by 0.08 Å for the spin-
polarized results relative to the spin-degenerate simulations
(2.47 Å), which is also reflected by a higher pressure
(magnetic p) calculated for the spin-polarized case (Fig. 3).
In the LRT, spin polarization influences the electron

velocity matrix elements that enter the calculation of the
Onsager coefficients [2,47] and enforces a spin selection
rule to take effect, due to the difference in electronic
structure of the spin-up and spin-down states. Figure 2
shows the dynamic electrical conductivity calculated with
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FIG. 1. Quadratic magnetic moment per atom at ρ ¼ 9 g=cm3

as a function of the simulation time for different T (upper panel)
and at T ¼ 3700 K for different ρ (lower panel). Horizontal lines
show time averages of the moment squares.
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FIG. 2. Pair correlation function from a spin-degenerate and a
spin-polarized DFT-MD simulation at ρ ¼ 6.75 g=cm3 and T ¼
2250 K (left panel). Frequency-dependent electrical conductivity
derived at the same thermodynamic state using all four possible
combinations of spin-polarized and spin-degenerate MD and
LRT (right panel). dc values are indicated by thick bars of the
same color.
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all four combinations of the spin-degenerate and spin-
polarized approach for DFT-MD and LRT.
This comparison illustrates that the influence of spin

polarization on optical conductivity through LRT is larger
than that of structural changes from DFT-MD simulations.
Regardless of whether the spin-polarized LRT calculations
are based on configurations from spin-polarized or spin-
degenerate MD simulations, zero-frequency values for σ
are in the range of 0.7–0.8 MS=m, while spin-degenerate
LRT yields values that exceed 1.0 MS=m.
Direct dc measurements of electrical resistivity of liquid

Fe at ambient pressure with high precision are limited to
2300 K [22], and measurements at higher T require
dynamic techniques [24,25]. These are exploding wire
experiments that generate isobaric states (e.g., at 0.2 GPa
[24]) and allow for direct measurements of ρ and T. To
compare to the experimental data, we perform simulations
at densities and temperatures measured in the experiments
of Hixson, Winkler, and Hodgdon [24], with ρ ¼ 6.75,
6.15, and 5.80 g=cm3 at T ¼ 2250, 3100, and 3710 K,
respectively. It is worth pointing out that differences in
the density between the two exploding wire studies [24,25]
exceed 0.1 g=cm3 at 3000 K and that the densities of
Hixson, Winkler, and Hodgdon [24] are in closer agree-
ment with the thermodynamic model by Komabayashi [54].
In the spin-degenerate PBE simulations, pressure from

experiments is underestimated by 8–13 GPa, with the p

difference decreasing with T (Fig. 3). Using the local-
density approximation (LDA) to exchange and correlation
leads to an additional pressure difference of 1–2 GPa.
While for most nonmagnetic materials, including transition
metals, LDA is known to overbind and PBE to underbind
[55,56], for Fe both the LDA and GGA predict volumes
that are too low for the crystalline phases [57]. Spin-
polarized results, by contrast, show a significantly reduced
pressure deviation of about −4 GPa that is T independent,
thus correcting the failure of spin-degenerate simulations to
a large extent. This behavior is in much better agreement
with LDA and PBE calculations for several nonmagnetic
materials that show differences in p due to the approximate
exchange and correlation functionals to remain largely T
independent until at least the critical point [58].
Electrical conductivity values from the spin-degenerate

PBE calculations decrease with T at a higher rate and are
larger by ≈30% than experimental values [22,24,25]. When
spin polarization is taken into account, differences decrease
to ≈10% (Fig. 3), and the T dependence becomes similar to
the experimental one.
The thermal conductivity of liquid iron has been mea-

sured [52,53] only slightly above TM ¼ 1808 K [22], and
significant differences exist between experiments [52].
Although we cannot equilibrate liquid states very close
to the melting point in the DFT-MD simulations due to
restrictions in the system size, the predicted thermal
conductivity from our calculations behaves almost linearly
with T along the experimental isobar and allows for a
reasonable extrapolation to TM (Fig. 3); for the spin-
polarized results, the extrapolation falls within the range
of experimental data. Thermal conductivity values from
spin-degenerate calculations are significantly higher, and
an extrapolation to TM overshoots experimental values.
The Lorenz numbers L of both spin-degenerate and spin-
polarized simulations fulfill the Wiedemann-Franz law
within 5% of the Drude-Sommerfeld value of π2=3. A
slight increase in L with T is similar to earlier DFT-MD
results for dense hydrogen plasmas [2].
As illustrated in Fig. 1, magnetic fluctuations decrease

with compression, and the differences in both the equation-
of-state and transport properties are expected to vanish at
high densities. As we have seen (Fig. 3), the p difference is
≈4.3 GPa at ambient volume; this difference decreases
along with the magnetic fluctuations, and at ρ ¼ 9.0 g=cm3

(with magnetic fluctuations below 10−2 μ2B) the p differ-
ence has disappeared (Fig. 4). This behavior resembles
predictions of the loss of magnetism in hexagonal close
packed (hcp) iron in an antiferromagnetic (AFM) structure
at high pressure that has been set up to model local spin
fluctuations [59]. Our simulations show that the magnetic
fluctuations drop most significantly in the ρ range between
8 and 9 g=cm3 from 0.15 to 0.033 μ2B, yet smoothly and
without a critical loss of magnetism as predicted for other
transition metals, e.g., Co [60,61]. Interestingly, the p range
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FIG. 3. Pressure and transport properties at densities and
temperatures from exploding wire experiments [24]. The results
from our work are represented as indicated in the legend. The thin
dashed line in the upper left panel indicates the experimental
pressure of 0.2 GPa [24]. Measurements of the electrical
conductivity by Hixson, Winkler, and Hodgdon [24], Beutl,
Pottlacher, and Jäger [25], and van Zytveld [22] are shown as
diamonds, squares, and a purple line, respectively. Experimental
thermal conductivities reported by Mills, Monaghan, and Keene
[52] and Nishi et al. [53] are indicated in black and turquoise,
respectively.
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for the most significant decay of magnetic fluctuations
(20–50 GPa) coincides with the loss of magnetism pre-
dicted in the AFM structure of hcp iron [59].
The electrical conductivity of the spin-degenerate cal-

culations follows a smooth and simple trend (Fig. 4). The
results from the spin-polarized calculations, however, dis-
play a well-pronounced increase in slope between 8 and
9 g=cm3; at ρ ≥ 9.5 g=cm3, they become indistinguishable
from the spin-degenerate results. A similar but less pro-
nounced behavior occurs for the thermal conductivity. This
indicates the presence of a continuous transition between
paramagnetic and diamagnetic liquid states in the phase
diagram of iron.
The Lorenz number of the spin-degenerate calculations

decreases with ρ, and its deviation from the Wiedemann-
Franz law changes from positive to negative, which occurs
between 8 and 9 g=cm3 (Fig. 4). At ρ < 9 g=cm3, the L of
the spin-polarized results is significantly higher than the spin-
degenerate values and increases with ρ. However, deviations
from the Wiedemann-Franz law do not exceed 8%.
In summary, we have shown that considering spin

polarization accounts for much of the discrepancy in
electrical and thermal conductivity between Kubo-
Greenwood results based on DFT-MD and experiments
at low p. This discrepancy has been a significant impedi-
ment in the acceptance of Kubo-Greenwood results in the
high-pressure mineral physics and geophysics community,
where they play a significant role in considerations of
the geodynamo. Small differences to experimental values
remain both for equation-of-state and transport properties,
but these are within the typical range of deviations of
DFT-derived properties using (semi)local approximations
to the exchange and correlation functional [56,58]. A fully
noncollinear treatment of magnetism could further decrease

this discrepancy, but such calculations are extremely
challenging to converge for disordered systems and beyond
the scope of the current work.
The magnitude of magnetic fluctuations decreases with

ρ and T. Along the 3700 K isotherm, a pronounced change
in σ occurs in a range of ρ ¼ 8.0–9.0 g=cm3, indicating a
continuous paramagnetic-to-diamagnetic transition in
liquid iron. The ρ-T behavior of the magnetic fluctuations
suggests that this transition has a negative slope in p-T
space. With diamond anvil cell experiments, it has become
possible to probe the relevant range p ¼ 20–50 GPa even
above the melting line [27], but higher precision in the
measurements will be required to detect differences of
the scale described here between spin-polarized and spin-
degenerate results.
At the conditions of Earth’s core, magnetic fluctuations

no longer play a role, such that prior results using the Kubo-
Greenwood formalism [12–14] are reproduced to within a
few percent and serve as a reliable basis for geodynamic
considerations [16,62]. For cores of the smaller terrestrial
planets in the Solar System, Mercury and Mars, magnetic
fluctuations may play a role, although alloying elements in
their cores like sulfur or silicon [63,64] may influence
their existence and magnitude. Because of the presence of
additional scattering centers, conductivities are already
reduced to different degrees depending on the nature of
light elements incorporated [65]; additional magnetic con-
tributions can potentially remedy two important existing
contradictions in geophysics. (i) They may resolve contra-
dictory inferences on the varying influence of different light
elements on electrical conductivity in experiments [33]
and computations [65]. (ii) Thermal conductivity at low p
may be reduced to the degree that values become similar to
those used previously in models that describe the thermal
evolution and magnetic field generation in Mercury [66]
and Mars [67]. This would render the ”new core paradox”
for the energy source of a dynamo, termed by Olson [17],
for the smaller planets pointless. Nevertheless, powering
Earth’s dynamo with high thermal conductivity remains a
challenge [62].
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