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We show that moiré bands of twisted homobilayers can be topologically nontrivial, and illustrate the
tendency by studying valence band states in�K valleys of twisted bilayer transition metal dichalcogenides,
in particular, bilayer MoTe2. Because of the large spin-orbit splitting at the monolayer valence band
maxima, the low energy valence states of the twisted bilayer MoTe2 at theþK (−K) valley can be described
using a two-band model with a layer-pseudospin magnetic field ΔðrÞ that has the moiré period. We show
that ΔðrÞ has a topologically nontrivial skyrmion lattice texture in real space, and that the topmost moiré
valence bands provide a realization of the Kane-Mele quantum spin-Hall model, i.e., the two-dimensional
time-reversal-invariant topological insulator. Because the bands narrow at small twist angles, a rich set of
broken symmetry insulating states can occur at integer numbers of electrons per moiré cell.
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Introduction.—Moiré superlattices form in van der Waals
bilayers with small differences between the lattice constants
or orientations of the individual layers, and often dramati-
cally alter electronic properties [1–6]. In the presence of
long-period moiré patterns, electronic states can be
described by continuum model Hamiltonians with the
moiré periodicity and spinors whose dimension is equal
to the total number of bands, summed over layers, in the
energy range of interest. Application of Bloch’s theorem
then gives rise to moiré bands [7]. Because the moiré
pattern often generates spatial confinement, moiré bands
can be narrow, enhancing the importance of electronic
correlations. The flat bands of magic-angle twisted bilayer
graphene, in which correlated insulating and superconduct-
ing states have been discovered [8,9], provide a prominent
example. The study of moiré flat bands has recently
become an active area of experimental and theoretical
research centered on efforts to identify promising bilayer
structures, and on topological characterization and many-
body interaction physics [10–15].
When the two layers are formed from the same material

(homobilayers), both must be treated on equal footing.
The �K-valley valence bands of semiconductor group-VI
transition metal dichalcogenide (TMD) monolayers pro-
vide a prototypical model system because strong spin-orbit
coupling and broken inversion symmetry lifts spin degen-
eracy [16], and the corresponding homobilayer can be
described by a two-band model with layer pseudospins
at each valley. The moiré pattern’s periodic modulation
can then be accounted for by a scalar potential and a

pseudomagnetic field ΔðrÞ whose components are the
coefficients of the layer Pauli matrix expansion of the
two-band Hamiltonian; i.e., Δx and Δy are the real and
imaginary parts of the interlayer tunneling amplitude and
Δz is the potential difference between layers. The fieldΔðrÞ
inherits the moiré pattern periodicity and plays a key role in
the discussion below.
In this Letter, we focus on the MoTe2 bilayer with AA

stacking [Fig. 1], for which valence band maxima are
located in �K valleys according to our first-principles
calculations as shown in the Supplemental Material (SM)
[17]. For this system, we find that ΔðrÞ has a skyrmion
lattice texture in real space, and that the moiré bands carry
valley-contrasting Chern numbers. The topological moiré
bands can provide a realization of the Kane-Mele model,
where the effective gauge potential is generated by the

FIG. 1. (a) Top view of AA stacked MoTe2 homobilayer with a
small twist angle θ and an in-plane displacement d0. The inset is a
schematic side view. (b) �K valence bands in the AA stacking
case when interlayer coupling is neglected.
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momentum shift between the two twisted layers. When the
bilayer is polarized by a vertical displacement potential,
the band Chern numbers are driven to zero before ΔðrÞ
becomes topologically trivial in real space. In partially
filled topological flat bands, interactions can, e.g., break
time-reversal symmetry to form quantum anomalous Hall
states.
Aligned bilayers.—To derive a moiré continuum

Hamiltonian, we start by analyzing the electronic structure
of an aligned bilayer [21]. Because the �K valleys are
related by time-reversal symmetry T̂ , we can focus on the
þK valley. In an AA stacked TMD homobilayer [Fig. 1],
the valence states at the þK valley valence band maximum
are mainly of dx2−y2 þ idxy orbital character, have spin up
(↑) along ẑ axis [16], and are separated from spin-down (↓)
states by strong spin-orbit splitting. Retaining only the spin
up valence-band states at theþK valley yields the two-band
k · p Hamiltonian [17],

H↑ðθ¼ 0;d0Þ¼
 
−ℏ2k2

2m� þΔbðd0Þ ΔTðd0Þ
Δ†

Tðd0Þ −ℏ2k2
2m� þΔtðd0Þ

!
; ð1Þ

with parameters that depend on the displacement d0
between the aligned layers. In Eq. (1), b and t refer to
bottom (b) and top (t) layers, k is momentum measured
from the þK point, m� is the valence band effective mass
that is approximately independent of d0 [17], Δb;t are layer-
dependent energies, and ΔT is an interlayer tunneling
amplitude. The dependence of Δα (α ¼ b, t, T) on d0 is
constrained by the symmetry properties of the bilayer.
The two-dimensional lattice periodicity of the aligned
bilayers implies that the Δα are periodic functions of d0.
A z ↔ −z mirror operation interchanges b and t and maps
displacement d0 to −d0, implying that Δtðd0Þ ¼ Δbð−d0Þ.
Threefold rotation around the ẑ axis requires that Δb andΔt
be invariant when d0 is rotated by 2π=3. These symmetry
constraints lead to the following two-parameter lowest-
harmonic parametrization:

Δlðd0Þ ¼ 2V
X

j¼1;3;5

cosðGj · d0 þ lψÞ; ð2Þ

where l ¼ 1 for the b layer and l ¼ −1 for the t layer, Gj

is the reciprocal lattice vector obtained by counterclockwise
rotation of G1 ¼ ð4πÞ=ð ffiffiffi

3
p

a0Þŷ by angle ðj − 1Þπ=3, a0 is
the monolayer TMD lattice constant, and V and ψ ,
respectively, characterize the amplitude and shape of the
potentials. Note that we have chosen the spatial averages of
Δb;t, which must be identical, as the zero of energy.
The d0 dependence of ΔT is most conveniently under-

stood by assuming a two-center approximation [7] for
tunneling between the metal dx2−y2 þ idxy orbitals, and
using a lowest-harmonic approximation. This leads to

ΔTðd0Þ ¼ wð1þ e−iG2·d0 þ e−iG3·d0Þ; ð3Þ

where w is a tunneling strength parameter. It is informative
to highlight three high-symmetry displacement values:
d0;n ¼ nða1 þ a2Þ=3 for n ¼ 0;�1, where a1;2 are the
primitive translation vectors of the aligned bilayer: a1 ¼
a0ð1; 0Þ and a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2Þ. For n ¼ 0 the metal

atoms of the two layers are aligned, Δt ¼ Δb ¼ 6V cosðψÞ
and ΔT ¼ 3w; the valence band maximum states are then
symmetric and antisymmetric combinations of the isolated
layer states. For n ¼ �1 the metal atoms in one layer are
aligned with the chalcogen atoms in the other layer, and ΔT
vanishes as a result of the threefold rotational symmetry
Ĉ3z. We determine the model parameters by fitting the
eigenvalues of H↑ðk ¼ 0Þ at the three displacements to
corresponding values from fully relativistic band structure
calculations using QUANTUM ESPRESSO [22]. We find that
ðV;ψ ; wÞ ≈ ð8 meV;−89.6°;−8.5 meVÞ for MoTe2.
Moiré Hamiltonian.—We construct the twisted bilayer

Hamiltonian by starting from an aligned bilayer with
d0 ¼ 0 and then rotating the bottom and top layers by
angles −θ=2 and þθ=2 around a metal site. (Any initial
displacement just shifts the moiré pattern globally [7,23].)
We take the origin of coordinates to be on this rotation axis
and midway between layers. With respect to this origin, the
bilayer has D3 point group symmetry generated by the
threefold rotation Ĉ3z around ẑ axis and a twofold rotation
Ĉ2y around ŷ axis that swaps the two layers. In a long-
period moiré pattern, the local displacement between the
two layers, approximated by θẑ × r, varies smoothly with
the spatial position r [21,24]. The moiré Hamiltonian is

H↑ ¼
 
− ℏ2ðk−κþÞ2

2m� þ ΔbðrÞ ΔTðrÞ
Δ†

TðrÞ − ℏ2ðk−κ−Þ2
2m� þ ΔtðrÞ

!
; ð4Þ

where ΔαðrÞ is obtained by replacing d0 in Eqs. (2)–(3)
with θẑ × r to account for the spatial variation of the local
inter-layer coordination. The moiré Hamiltonian is periodic
with the moiré period aM ¼ a0=θ. Because of the twist, the
þK points associated with the bottom and top layers are
rotated to different momenta, accounted for by the κ� shifts
in Eq. (4). We choose a moiré Brillouin zone (MBZ) in
which the κ� points are located at the MBZ corners, as
illustrated in Fig. 2(a).
To reveal the spatial structure of the Δα field, we define

the layer pseudospin magnetic field:

ΔðrÞ ¼ ðΔx;Δy;ΔzÞ≡
�
ReΔ†

T; ImΔ†
T;
Δb − Δt

2

�
: ð5Þ

As illustrated in Fig. 2(b), ΔzðrÞ vanishes along the links
that connect nearest-neighbor RM

M sites and has minimum
and maximum values at RX

M and RM
X . The in-plane

pseudospin field, which accounts for interlayer tunneling,
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has vortex and antivortex structures centered on RX
M and

RM
X . Here Rβ

α denotes high-symmetry sites at which α
atoms of the bottom layer are locally aligned with β atoms
of the top layer. It follows that ΔðrÞ forms a skyrmion
lattice, i.e., that the direction of the ΔðrÞ covers the unit
sphere once in each moiré unit cell (MUC). We have
explicitly confirmed this property by numerically evaluat-
ing the winding number [25]:

Nw ≡ 1

4π

Z
MUC

dr
Δ · ð∂xΔ × ∂yΔÞ

jΔj3 ¼ −1: ð6Þ

Skyrmion lattice pseudospin textures in position space
indicate [26] the possibility of topological electronic bands
in momentum space, although we will find that the
connection is not one to one.
Topological bands.—The moiré band structure is illus-

trated in Fig. 3(a) for a representative angle θ ¼ 1.2°. The
Ĉ2yT̂ symmetry of the Hamiltonian maps κþ → κ− and
therefore enforces degeneracy between these points. For the
two topmost moiré bands of the þK valley, wave functions
in the b (t) layer are concentrated near the RM

X (RX
M) sites,

which are Δb (Δt) maxima. Because of the layer-dependent
momentum shifts κ� in the kinetic energies, the moiré band
wave functions vary rapidly over the MBZ. In particular,
the wave function of the topmost moiré band at κþ and κ−
are respectively localized in layers b and t. By integrating
the Berry curvature F over the MBZ [27], we confirm that
the Chern numbers C of the two topmost þK valley moiré
bands in Fig. 3 are nontrivial (C ¼ �1) at θ ¼ 1.2°. The
corresponding bands at the −K valley must have the
opposite Chern numbers due to the T̂ symmetry. Spin-
valley locking implies that when the chemical potential is
in the gap between the two topmost bands, the twisted

homobilayer is not only a valley Hall insulator but
also a quantum spin Hall insulator, i.e., a topological
insulator [28,29].
To gain deeper insight into the topological bands, we

construct a tight-binding model. The real space distribution
of the wave functions suggests a two-orbital model for the
first two moiré bands:

HTB ¼
X
l;s

X0

RR0
t0c

†
RlscR0ð−lÞs

þ
X
l;s

X
R

X0

aM

t1eisκl·aMc
†
ðRþaMÞlscRls; ð7Þ

where s ¼ � denotes spin (equivalent to valley �K), and
l ¼ � labels orbitals localized in the bottom (þ1) and top
(−1) layers and centered around theRM

X andRX
M sites. The

two orbitals form a honeycomb lattice in Fig. 3(d). In
Eq. (7), the spin up and down sectors are decoupled
due to the spin-valley Uð1Þ symmetry of the low-energy
theory, and are related by T̂ symmetry. The first line of
Eq. (7) captures interlayer hopping between nearest neigh-
bors on the honeycomb lattice. Its form is constrained by
the requirements that the energy spectra have threefold

FIG. 2. (a) Brillouin zones of the bottom (blue) and top (red)
layers in a twisted bilayer, and the moiré Brillouin zone (black).
(b) TheþK-valley layer pseudospin skyrmion lattice in the moiré
pattern. The color map illustrates the variation of Δz, and the
arrows indicate Δx;y. The white lines outline a single moiré unit
cell. The dots indicate the high symmetry positionsRM

M,R
M
X , and

RX
M, where the local interlayer displacements are respectively

d0;0, d0;1, and d0;−1.
FIG. 3. (a) Moiré band structure at twist angle 1.2°. The system
is a topological insulator when the chemical potential (black
dashed line) is in the gap between the first and the second bands.
The red dashed lines are a tight-binding-model fit based on
the effective Hamiltonian Eq. (7) with t0 ≈ 0.29 meV and
t1 ≈ 0.06 meV. (b) Total density of states (DOS) as a function
of the number of holes per moiré unit cell (bottom) and per area
(top). (c) Berry curvature F for the first band in (a). Here the
typical magnitude of F is 3 orders of magnitude larger than that
in the monolayer [16,17]. (d) Illustration of the tight-binding
model (7). The yellow and green dots representRX

M andRM
X sites,

and together form a honeycomb lattice. The signs � refer to the
bond and spin dependent hopping phase factors expð�i2πs=3Þ.
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rotational symmetry and be identical at κþ and κ− points.
The second line of Eq. (7) captures intralayer hopping
between next nearest neighbors on the honeycomb lattice;
the bond and spin-dependent phase factors expðisκl · aMÞ,
which take values of expð�i2π=3Þ, are analogous to the
Peierls substitution and account for the momentum shift κl
in Eq. (4). The Hamiltonian Eq. (7) is equivalent to the
Kane-Mele model [28,29], and to two time-reversed-
partner copies of the Haldane model [30]. It correctly
captures both the topological character and the energy
dispersion of the first two bands in Fig. 3(a).
At a critical angle θ�1 ≈ 1.74° the gap between the second

and the third bands closes at the γ point, as illustrated in
Fig. 4. When θ crosses θ�1 from below, the Chern number
of the first band in the þK valley remains as −1, while the
Chern numbers for the second and third bands change from
ðþ1; 0Þ to ð−1;þ2Þ. Although, the two-orbital model
Eq. (7) is not fully applicable for θ > θ�1 it still captures
the main character of the first two bands in regions of
momentum space away from the γ point. The system
remains as a topological insulator when the chemical
potential is in the gap between the first and the second
bands until θ reaches θ�2 ≈ 3.1°, beyond which there is no
global gap between the first two bands. In the SM [17], we
have verified the robustness of our predicted topological
bands against perturbation from remote bands.
Field induced topological transition.—Because the two

sublattices in Eq. (7) are associated with different layers,
a vertical electric field generates a staggered sublattice
potential, which can induce a topological phase transition
[28–30]. To study this transition, we add a layer dependent
potential lVz=2 to the moiré Hamiltonian Eq. (4) so that
Δz → ðΔb − Δt þ VzÞ=2. (We neglect the small spatial
modulation of Vz due to variation in the vertical distance

between layers in the moiré pattern [31].) The magnitude of
Vz has a critical value jVzjc, at which the gap between the
first and the second moiré bands closes at the κ� points.
When jVzj > jVzjc, wave functions in the first moiré band
are primarily localized in one single layer and the band
becomes topologically trivial. The tight-binding model
Eq. (7) predicts that jVzjc is equal to splitting between
the first and the second bands at κ� when Vz ¼ 0, because
the interlayer hopping term in Eq. (7) vanishes at these
momenta. In Fig. 4(c) we compare values of jVzjc calcu-
lated from the tight-binding and the full moiré band
Hamiltonian, showing that they match well, particularly
for small twist angles (long moiré period). We note that
there is no one-to-one correspondence between the Chern
numbers C of the electronic bands and the winding number
Nw of the pseudospin field, which remains nontrivial until
Vz equals jΔb − Δtj evaluated at the RX

M or RM
X sites.

Interaction effects.—When the moiré bands are nearly
flat, the density of states is strongly enhanced [Fig. 3(b)]
and many-body interaction effects are magnified. Here we
focus on interaction effects within the first two moiré bands
at zero Vz and small θ. The on-site Coulomb repulsion U0

scales as e2=ðϵaWÞ, where ϵ is an effective dielectric
constant that depends on the three-dimensional dielectric
environment, and aW is the spatial extent of the Wannier
orbitals centered at RX

M or RM
X sites. For θ around 1°, we

find that U0 can be more than one order of magnitude
larger than the hopping parameters t0;1 [17]. In the strong
correlation limit, we anticipate that the interplay between
layer and spin or valley degrees of freedom will lead to
unusual distinct insulating states at integer numbers of
holes per MUC. For one hole per MUC, where the first
moiré band is half filled, one candidate insulating state is
ferromagnetic. Because the single-particle Hamiltonian has
only Uð1Þ symmetry, perpendicular spin polarization is
energetically preferred. The Ising spin anisotropy implies
finite temperature phase transitions. When the first moiré
band is completely spin polarized, the system is a quantum
anomalous Hall insulator. Similar physics could occur for
three holes per MUC, where the second moiré band is half
filled. For two holes per MUC (equivalently one hole per
sublattice site of the honeycomb lattice in Kane-Mele
model), there is a competition between the quantum spin
Hall insulator and the antiferromagnetic insulator [32],
which occur for weak and strong interactions, respectively.
For some fractional numbers of holes per MUC, the flat
bands may host fractional topological insulators [33].
Discussion.—It has been proposed that the Hubbard

model can be simulated in TMD heterobilayers [10]. In
twisted TMD homobilayers, the two layers can be effec-
tively decoupled by using a finite layer bias potential to
drive the system into region (II) of the phase diagram in
Fig. 4(c). Thus, a conventional one-orbital Hubbard model
can also be studied in twisted homobilayers, with a greater
scope for in situ manipulation of model parameters.

FIG. 4. (a) Moiré bands at twist angle 2°. (b) Energy gaps
between adjacent moiré bands as a function of θ. The gap εij is
the difference between the minimum energy of band i and the
maximum energy of band j. (c) Phase diagram as a function of
angle θ and layer bias potential Vz. When the chemical potential
is in the gap between the first and the second band, the system is a
topological insulator in region (I) and a trivial insulator in region
(II). In region (III), the two bands overlap in energy. The solid and
dashed green lines show the critical bias potentials obtained using
the full moiré Hamiltonian and the effective tight-binding model,
respectively. (b) and (c) have the same horizontal axis.
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Compared to heterobilayers, twisted TMD homobilayers
may be experimentally realized with a more precise control
of the twist angle by using the “tear-and-stack” technique
[4,8,9]. Moiré bands with valley-contrasting Chern numbers
have been proposed in some graphene-based moiré systems
[14,15,34]. In this case, however, quantum spin Hall states
that might be induced by interactions cannot survive to
accessible temperatures because electrons in graphene have
accurate SUð2Þ spin symmetry which enhances fluctuation
effects. In Ref. [35], quantum spin Hall nanodots and
nanostripes have been proposed for TMD-based moiré
systems in which the large gap between valence and
conduction bands needs to be inverted by a strong vertical
electric field. In contrast, our model Hamiltonian relies only
on valence band states. Our proposal for topological states is
based on valley contrast physics and on pseudospin texture
in the moiré pattern; the advantage is that it does not require
massless chiral fermions in the parent monolayer or aligned
bilayer, which may lead to application in a larger class of
two-dimensional materials.
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