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We provide proof-of-principle illustration of lasing in a two-dimensional polariton topological insulator.
Topological edge states may arise in a structured polariton microcavity under the combined action of spin-
orbit coupling and Zeeman splitting in the magnetic field. Their properties and lifetime are strongly affected
by gain. Thus, gain concentrated along the edge of the insulator can counteract intrinsic losses in such a
selective way that the topologically protected edge states become amplified, while bulk modes remain
damped. When gain is compensated by nonlinear absorption the metastable nonlinear edge states are
formed. Taking a triangular structure instead of an infinite edge we observed persistent topological currents
accompanied by the time-periodic oscillations of the polariton density.
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The physics of topological insulators is an interdiscipli-
nary research area promising numerous applications [1,2].
Topological insulators behave as usual insulators in their
bulk, but allow topologically protected unidirectional edge
currents with in-gap energies. They were initially studied in
electronic systems [1–4], but later on they have been
introduced in mechanical [5], acoustic [6,7], atomic
[8–11], and photonic systems [12–24]. The latter include
gyromagnetic photonic crystals [12,13], arrays of coupled
resonators [15–17], metamaterials [18,19], helical wave-
guide arrays [20–23], and microcavity polaritons [24–27].
Some of these systems, in contrast to electronic ones,
allow investigation of the interplay between topology and
nonlinearity [28], leading to such new phenomena as
inversion of velocity of the edge states [29,30], modula-
tional instability [31,32], formation of solitons [33–37] and
vortices [38], the effects of bistability [39] and nonlinear
isolation [40].
Most of topological systems feature intrinsic losses [41].

Spatially inhomogeneous losses can be used for observation
of topological defect states [42–44], but in general losses
are detrimental for observation and practical utilization of
topological states, thus gain compensating them is required.
This is where the topological nature of the system becomes
truly beneficial, since the parameters of the system can be
engineered to allow preferential amplification of strongly
localized topological states relative to the other. Lasers based
on this approach were realized in one-dimensional photonic
and polaritonic structures [45–48]. It was also used for
observation of lasing in topological photonic crystals [49]
and lattices of coupled-ring resonators [50,51]. Topological
insulator lasers are resistant to disorder limiting performance
of conventional lasers.

The aim of this work is to show that a two-dimensional
topological insulator laser supporting persistent edge cur-
rents, which do not exist in one-dimensional systems [46],
can be realized using microcavity polaritons—a promising
platform for the exploration of topological effects. Existing
technologies of microcavity structuring [52,53] allow
fabrication of periodic systems exhibiting required degen-
eracies in the linear spectrum [54–58]. Opening of the
topological gaps in these structures occurs due to simulta-
neous action of the polarization-dependent tunneling
between pillars, which is producing the effective spin-orbit
coupling effect [59–61], and Zeeman splitting of the
polariton spectra. Isolated microcavity pillars [62,63],
planar structures [64], and organic microcavities [65] were
used for demonstration of polariton lasing, where linear
gain is compensated by nonlinear absorption required for
steady-state laser operation [66–68].
Below we consider polariton lasing in the presence of

spin-orbit coupling and Zeeman splitting in a honeycomb
lattice, where gain is localized only along the lattice edges.
Such gain in the system with broken time-reversal sym-
metry results in preferential amplification of unidirectional
edge states. Very high (in comparison with photonic
systems [49]) repulsive nonlinearity stemming from exci-
ton-exciton interactions allows realization of new regimes
of lasing; it can cause dynamical instabilities of edge states
and even transitions between states from different topo-
logical gaps. Developed technologies of microcavity struc-
turing allow design of new practically sized laser structures,
such as triangular ones, where instabilities are suppressed
and persistent edge currents form.
We model the topological polariton laser using the

system of coupled nonlinear Schrödinger equations for
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spin-positive and spin-negative components of the spinor
wave function Ψ ¼ ðψþ;ψ−ÞT [29,53,66–68]:

i∂tψ� ¼ −ð1=2Þð∂2
x þ ∂2

yÞψ� þ βð∂x ∓ i∂yÞ2ψ∓
þ ½Rreðx; yÞ þ iRimðx; yÞ − iγ � Ω�ψ�
þ ½ð1 − iαÞjψ�j2 þ σjψ∓j2�ψ�: ð1Þ

We assume that the polariton condensate is created by
the optically injected excitons that generate a reservoir of
active excitons pumping the polariton condensate, see, e.g.,
Refs. [69,70]. For the sake of simplicity, we adiabatically
eliminate the rate equation for the reservoir as has been
done by many authors, see, e.g., Refs. [67,71]. We use
circular polarization basis with wave functions ψ� for spin-
positive and spin-negative polaritons; spin-orbit coupling is
described by the β terms [59–61]; Ω is proportional to the
Zeeman energy splitting in the external magnetic field; we
assume repulsion for polaritons of the same spin and weak
ðσ ∼ −0.05Þ attraction for polaritons with opposite spins
[72]; nonlinear absorption ∼α and linear losses ∼γ. The
honeycomb lattice is described by the potential energy term
Rreðx; yÞ ¼ −pre

P
n;m Qðx − xn; y − ymÞ, where potential

wells have the depth pre and shapesQ¼exp½−ðx2þy2Þ=d2�
with width d and separation a. The lattice is truncated by
the zigzag edges in the x direction and is periodic in y with
a period Y ¼ 31=2a [Fig. 1, top left]. Gain acts only inside
the edge pillars, which can be achieved with focused beam
illuminating edge channels [73], and is accounted using the
imaginary part Rimðx; yÞ ¼ pim

P
q;lQðx − xq; y − ylÞ of

the potential, with pim ≪ pre being gain amplitude
[Fig. 1, top right]. We normalize x; y coordinates to the
characteristic distance L, all energy parameters ðpre;ΩÞ to

ε0 ¼ ℏ2=mL2, where m is the effective polariton mass, and
time to τ0 ¼ ℏε−10 . For L ¼ 1 μm and m ∼ 10−34 kg, we
get ε0 ∼ 0.7 meV and τ0 ∼ 0.9 ps. We assume [69,73,27]
width of the Gaussian potential wells of 1 μm ðd ¼ 0.5Þ,
pillar-to-pillar separation of 1.4 μm ða ¼ 1.4Þ, potential
depth ∼5.6 meV ðpre ¼ 8Þ, Zeeman splitting of 0.35 meV
ðΩ ¼ 0.5Þ, spin-orbit coupling energy of ∼0.2 meV
ðβ ¼ 0.3Þ, and characteristic polariton lifetime ∼18 ps
ðγ ¼ 0.05Þ. Structure with bearded edges is discussed in
Ref. [74].
Bulk honeycomb potentials are known to possess degen-

eracies in the mode spectrum around DiracK andK0 points.
Simultaneously acting spin-orbit coupling and Zeeman
splitting break time-reversal symmetry of Eq. (1) and lead
to a topological gap opening around Dirac points (several
gaps may open for our β;Ω parameters). Topological
properties of this system are characterized by topological
invariants—band Chern numbers. Using the approach of
Ref. [37] we calculated Chern numbers for top four bands:
C1 ¼ −1, C2 ¼ 0, C3 ¼ þ1, and C4 ¼ 0. This structure of
topological invariants is due to the spinor character of our
system, whose spectrum at β ¼ 0 includes two mutually
shifted by 2Ω groups of bands, where either the ψþ or ψ−
component dominates [35]. Some of them (including bands
touching in Dirac points) overlap and may fold for nonzero
spin-orbit coupling β. When the lattice is truncated linear
edge states appear in topological gaps. To find them we
omit nonlinear terms in Eq. (1), while keeping linear
losses and gain, and search for eigenmodes ψ�ðx; y; tÞ ¼
u�ðx; yÞ expðikyþ iεtÞ, where u�ðx; yÞ ¼ u�ðx; yþ YÞ
and u�ðx → �∞; yÞ ¼ 0, k is the Bloch momentum along
the y direction, and ε ¼ εre þ iεim is the “energy”, which is
a complex number in our case due to presence of gain and
losses (modes with −εim > 0 are amplified, while modes
with −εim < 0 are attenuated; for pim ¼ 0 all modes are
attenuated and εim ≡ γ). Figure 2 shows εre; εim versus

FIG. 1. Lattice potential and profile of the gain concentrated at
the left edge of the polariton insulator (1st row). jψ�j distribu-
tions in the counterpropagating edge states from two different
branches at k=K ¼ 0.4 (2nd, 3rd rows) and k=K ¼ 0.5 (4th, 5th
rows), pim ¼ 0.13. Density distributions n ¼ jψþj2 þ jψ−j2 in
two states at k=K ¼ 0.4 are shown in the 6th row. Since gain acts
on the left edge, the states from the left edge are amplified, and
the right edge states decay.

FIG. 2. Real part εre and imaginary part εim (taken with opposite
sign) of energies of linear modes in polariton topological
insulator with amplification on its left edge versus k=K at pim ¼
0.09 (a) and pim ¼ 0.13 (b). Captions in (a) indicate the edge at
which the edge state resides. Only modes with −εim > 0 (shown
by colored bars) experience amplification (lase). Note, that all the
values of εim with −εim < 0 are set to zero.
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normalized Bloch momentum k=K, where K ¼ 2π=Y. The
dependence εreðkÞ reveals edge states in topological gaps.
The number of edge states per interface is defined by the
gap Chern number (sum of Chern numbers for all bands
lying above this gap). It is −1 for two upper gaps (second
gap is shown in Fig. 2 only partially, see [74] for extended
spectrum). Usually edge states connecting bands emerge
from them around k ¼ K=3 and k ¼ 2K=3 points—
remnants of K and K0 points in the spectrum of bulk
lattice (intervals of edge state existence may be asymmetric
around k ¼ K=2 point due to spin-orbit coupling).
Edge states with ∂εre=∂k > 0 (corresponding to the

current in the negative y direction) reside on the right
edge, while states with ∂εre=∂k < 0 (current in the positive
y direction) reside on the left edge. Edge states may emerge
in some lower gaps, but they do not lase for our parameters
and are not described here.
Efficiency of the pump going into the edge and other

possible states from the edge pillars depends on the overlap
of a given state with the amplifying pillars. Main advantage
of our system is that topological edge states are amplified
most efficiently among all modes of the system. As a result
when gain amplitude pim exceeds a threshold pth

im ∼ 0.088
some topological modes at the edge where gain acts acquire
energies with −εim > 0 and start to lase [colored bars in
Fig. 2(a)]. In the upper topological gap shown in Fig. 2,
lasing of the edge states becomes possible first around the
momentum k ¼ K=2. For selected Ω; β parameters lasing
may occur also in second gap around k ¼ 0 (Fig. S1 in the
Supplemental Material [74]), but usually it requires slightly
larger gain amplitude than the threshold value mentioned
above. The momentum range where lasing occurs expands
with pim [Fig. 2(b)]. For sufficiently large gain lasing can
also happen for the bulk modes, but the topological modes
feature the lowest threshold. Examples of the linear edge
states are shown in Fig. 1. Gain acting only on one of the
two edges leads to grows of modes on that edge and lifts the
degeneracy of the edge states at k ¼ K=2 (4th and 5th rows
in Fig. 1). Since edge state existence interval is asymmetric
with respect to k ¼ K=2, at fixed k the energies εre of two
states from different braches have different separations
from gap edges, leading to different localization of modes
(localization is larger for εre values closer to the gap center).
Linear amplification of the edge states on the left

boundary for pim > pth
im can be balanced by the nonlinear

absorption (pump depletion), and lead to formation of
stable lasing states. We seek such solutions of Eq. (1) in the
form ψ�ðx; y; tÞ ¼ u�ðx; yÞ expðikyþ iμtÞ, where k is
the momentum and μ is the real parameter characterizing
the energy (or frequency) shift, u�ðx; yÞ ¼ u�ðx; yþ YÞ is
the periodic function. The latter has been found using
Newton iterations with an additional power balance con-
dition allows us to calculate μ. Nonlinear modes emerge
when gain exceeds lasing threshold for a given k, see
Fig. 3(a), where we show the dependence of the maximal

gain −εim experienced by linear mode on pim at k ¼ 0.4K.
Figures 3(b), 3(d) show that peak amplitude amax− of the
dominating ψ− component in the nonlinear edge state (see
examples of profiles in Fig. 5) increases with pim. The
energy μ of the nonlinear edge state at its generation
threshold (bifurcation point) coincides with that of the
linear mode, εre [top dashed line in Fig. 3(c)], and decreases
with the increasing gain, until it reaches at certain critical
pim the lower boundary of topological gap (lower dashed
line), below which edge states couple with delocalized bulk
modes acquiring nonzero background inside the array. We
truncated respective amax− ðpimÞ dependencies at this critical
value even though they can formally be continued beyond
it. An interval of gain corresponding to the edge state
energy located within the topological gap expands with
increase of the nonlinear absorption [Fig. 3(b)].
Nonlinear edge states demonstrate several destabilization

scenarios and resulting dynamical evolution. For the gain
levels close to the lasing threshold, the edge modes are
practically stable. They do not show instabilities even at
t ∼ 104 exceeding polariton lifetime by several orders of
magnitude. Evolution of peak amplitude of perturbed
metastable state is shown in Fig. 4(a), while corresponding
density distribution at large time is illustrated in Fig. 5(c).
Large-amplitude edge states with energies μ close to the

FIG. 3. (a) Maximal attenuation or gain experienced by the
linear edge state (imaginary part of its energy −εim) versus pim.
At pim ≈ 0.09 decay is replaced by amplification leading to lasing
in edge states. Peak amplitude of dominating ψ− component (b)
and energy (c) of stationary nonlinear edge state with k ¼ 0.4K
versus pim for α ¼ 0.1, 0.2, 0.3, and 0.4. Upper dashed line in
(c) is the energy of linear edge state; lower dashed line is the edge
of the topological gap at k ¼ 0.4K. (d) The same as in (b) but for
k ¼ 0.5K. In all cases gain acts on the left edge.
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border of the topological gap, obtained at high gain levels
are unstable, see Fig. 4(b). However, even in the developed
instability regime the wave remains localized close to the
lattice edge, see Fig. 5(d), and the radiation emitted in the
course of instability development into the lattice bulk is
quickly absorbed. After some transient stage this wave
transforms into a stable pattern from Fig. 5(e) with distinct
spatial spectrum [compare input and output stripe-like
spectra in Fig. 5(f) and 5(g) that show notable mutual
shift], that has lower energy μ ∼ 2.9 as follows from

instantaneous μðtÞ dependence in Fig. 4(b); i.e., this stable
state originates from the lower topological gap. Increasing
the nonlinear absorption coefficient to α ∼ 1 tends to
suppress instabilities and leads to formation of the breath-
ing edge states.
To prove that edge currents in our system are topologi-

cally protected we consider interaction of the nonlinear
edge states with defect in the form of missing pillar
[Fig. 5(h),5(i)]. When β;Ω ≠ 0 edge state is only locally
deformed around defect, revealing persistent current
[Fig. 5(j)]. If we make system nontopological, e.g., by
setting spin-orbit coupling β to zero, the edge states
exhibit strong deformation extending far beyond the defect
indicating on considerable reduction of lasing intensity
[Fig. 5(k)]. Moreover, ψþ and ψ− components in such state
become identical at large t leading to loss of polarization
structure (see Fig. S2 in [74] for comparison of local
polarization degrees in states with nonzero and zero β)
typical for topological edge states [39].
Spatially periodic nonlinear waves in conservative or

dissipative systems often become unstable with respect to
perturbations containing spatial frequencies from certain
finite band, see, e.g., Refs. [35,75]. On the other hand, the
size of the system imposes the restriction on the minimal
spatial frequency of a perturbation that can be considered
practical. Therefore, in a finite system the instability band is
limited not only on the side of high spatial frequencies, but
also on the low-frequency side, and it can even vanish
completely making the wave stable. To test this hypothesis
in polariton topological insulators, we considered triangular
insulator with gain on its edges, depicted in Fig. 6. We took
as an input at t ¼ 0 the exact nonlinear edge state at k ¼
0.4K obtained for the straight edge for the same pim; α and
imposed a broad envelope on it to excite one side of the
triangle. After a transient stage, where clockwise circu-
lation is already obvious, one observes formation of the

FIG. 4. Peak amplitudes of ψþ and ψ− components versus time
illustrating (a) metastable evolution at pim ¼ 0.11, α ¼ 0.4,
k ¼ 0.5K, (b) transformation of the unstable edge state into
stable one at pim ¼ 0.14, α ¼ 0.4, k ¼ 0.5K [blue line shows
instantaneous μðtÞ dependence], and (c) excitation of the persis-
tent current in triangular structure at pim ¼ 0.13, α ¼ 0.4,
k ¼ 0.4K. Dots correspond to patterns shown in Figs. 5 and 6.

FIG. 5. (a) Potential and (b) gain profile in polariton topological insulator. (c) jψ−j distribution in metastable perturbed edge state at
pim ¼ 0.11, t ¼ 2000. (d), (e) Decay of the unstable edge state and its transformation into stable one at pim ¼ 0.14. (f), (g)
Corresponding input and output spectra of ψ− within kx;y ∈ ½−3K;þ3K� window, dashed lines show kx; ky axes. (h),(i) Potential and
gain profile in insulator with a defect. Interaction of edge state with a defect in topological insulator with β ¼ 0.3 (j) and in trivial
insulator with β ¼ 0 (k). In all cases α ¼ 0.4, k ¼ 0.5K.
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persistent clockwise edge current (for different inputs)
associated with the stable lasing regime. The peak ampli-
tude of the wave exhibits small periodic oscillations
[Fig. 4(c)]. The existence of the clockwise current is
obvious also at large times, since modulus distribution in
one region on the edge differs from that in other edge
points, and this region travels along the edge.
Corresponding spatial spectra [see the Supplemental
Material [74], Figs. S3(a),3(b)] reveal practically absent
contribution from kx; ky ¼ 0 harmonics indicating the
difference of this topological state from previously
observed bulk modes [54]. Moreover, turning the system
into a nontopological one by setting β ¼ 0 drastically
changes both spatial structure (see bottom right panel in
Fig. 6, where only sites in one sublattice are populated in
contrast to topological case) and spectrum [Fig. S2(c),
Supplemental Material [74]] of the excited state.
Summarizing, we proposed a two-dimensional topologi-

cal-insulator polariton laser. The system is based on a
honeycomb array of microcavity pillars and allows us to
realize lasing in the topologically protected edge states. We
presented first examples of stable and unstable topological
edge states in a polariton laser in an idealized geometry
with the straight infinite edges and in a more a realistic
triangular configurations. Our findings pave the way to
experimental realizations of polaritonic topological lasers.
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