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We show for the first time that it is possible to realize laser beam focusing at the few-photon level in the
four-wave-mixing process, and at the same time reduce the quantum uncertainty in width. The reduction
in quantum uncertainty results directly from the strong suppression of local intensity fluctuations. This
surprising effect of simultaneous focusing and reduction of width uncertainty is enabled by multi-spatial-
mode (MSM) squeezing, and is not possible via any classical optical approach or single-spatial-mode
squeezing. Our results open promising possibilities for quantum-enhanced imaging and metrology; as an
example, the limit on the measurement of very small beam displacement can be enhanced within feasible
experimental parameters because of beam focusing and the noiseless amplification in the MSM squeezing
process.
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Introduction.—It is well known that a laser beam can be
focused via classical linear or nonlinear optical techniques,
e.g., lens or self-Kerr effects [1]. As the laser intensity
decreases to the few-photon level, focusing can only be
possible via linear optics since nonlinear effects become
negligible. In a quantum perspective, a focused laser beam
is always accompanied by vacuum quantum fluctuations,
leading to uncertainties in all physical properties associated
to the laser beam such as beam width [2]. The beam width
uncertainty ΔW=W0 scales as 1=

ffiffiffiffi
N

p
, withW0 and N being

the beam width and total photon number, respectively [2];
i.e., ΔW becomes significant at weak laser intensities
of a few photons. On the other hand, a weak focused laser
beam with reduced width uncertainty is highly important
for a variety of topics in quantum-enhanced metrology
including subshot noise and superresolution quantum
imaging [3–6]. In particular, it is crucial for practical
applications including the reduction of uncertainty in the
laser beam pointing direction [7], which allows ultra-
sensitive position-dependent measurement of nanometer
displacements [8,9], and also detection of nanoparticle
movements in biological systems where only very weak
light is allowed in order to avoid damage [10,11]. This
stimulates the question of whether one can realize a weak
focused beam with reduced width uncertainty; obviously,
classical approaches based on linear optics are unable to
do so.
In recent years, multi-spatial-mode (MSM) quadrature

squeezing, which explores the transverse spatial degree
freedom of light, has received intensive investigations due
to its promising applications in a variety of directions

including quantum entanglement and information [12–23],
detection of gravitational waves [24–26], and also the
aforementioned applications [3–11]. In general, MSM
squeezing involves a large number of squeezed spatial
modes, implying localized spatial squeezing and thus
reduction of local intensity fluctuation. A series of elegant
experiments have been performed to demonstrate MSM
squeezing in atomic systems [27–33]. It is straightforward
to envision that MSM squeezing would result in strong
suppression of local intensity fluctuations in the transverse
plane [34] and thus reduction of beam width uncertainty.
Here we demonstrate a surprising effect enabled by

MSM squeezing, which is the focusing of a very weak
laser beam at the few-photon level and simultaneously
remarkable reduction of beam width uncertainty due to the
strong suppression of local intensity fluctuation. Our
scheme is specifically explained in a conjugate four-
wave-mixing process in atomic gases, but should also be
possible in other systems.
Theoretical model.—As shown in Fig. 1, our scheme to

realize beam focusing is implemented in a conjugate four-
wave-mixing process [15,16,27,32,33,35–39]. The inter-
acting Hamiltonian can be written as

Ĥ¼−ℏ½Δσ̂22þΔc1σ̂33þðΔþΔc2Þσ̂44
þΩc1σ̂31þΩc2σ̂42þg32âσ̂32þg41âσ̂41þH:c:�; ð1Þ

where gj is the coupling coefficient for the quantum probe
âwhich is defined as gj ¼ μjEp=ℏ, with μj being the dipole
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moment of the corresponding transition and Ep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωp=ð2ϵ0VÞ

p
the electric field of a single probe photon

(j ∈ f32; 41g). Here for simplicity gj is assumed to be real
and also we will set g32 ¼ g41 ¼ g in the following. Here
we have further simplified the collective atomic operators
σ̂ijðr; tÞ ¼

P
njinðtÞihjnðtÞjδðr − rnÞ as σ̂ij, with δðr − rnÞ

being the Dirac delta function. Ωcj (j ∈ f1; 2g) are the
Rabi frequencies of the classical control fields, respectively.
Δc1¼ωc1−ðω3−ω1Þ;Δc2¼ωc2−ðω4−ω2Þ, and Δp ¼
ωp − ðω3 − ω2Þ are the detunings for the corresponding
fields, and Δ ¼ Δc1 − Δp is the two-photon detuning
between Ωc1 and â, here we assume 2ωp ¼ ωc1 þ ωc2,
leading to Δp ¼ ðΔc1 þ Δc2 þ ω21 þ ω43Þ=2, where ωij ¼
ωi − ωj. In the Hamiltonian, we have also assumed the two
control fields are much stronger than the two quantum
fields, such that they can be considered as classical.
Furthermore, since the control fields are chosen to be far
detuned from the atomic transition, their propagation in the
medium would be the same as in vacuum, where only free-
space diffraction needs to be considered.
Considering the continuous wave limit, the propagation

equations for the quantum field â read

� ∂
∂z −

i
2kp

∇2⊥
�
âðr⊥; zÞ ¼

ig
c
½σ̂ð1Þ23 ðrÞ þ σ̂ð1Þ14 ðrÞ�; ð2Þ

here ∇2⊥ introduces the paraxial diffraction which would

defocus the probe in the spatial domain. σ̂ð1Þ23 ðrÞ and σ̂ð1Þ14 ðrÞ,
which denote the atomic coherence, are given by

σ̂ð1Þ23 ðrÞ ¼ gN ½χl1ðrÞâðrÞ þ χn1ðrÞâ†ðrÞ� þ F̂1ðrÞ; ð3aÞ

σ̂ð1Þ14 ðrÞ ¼ gN ½χl2ðrÞâðrÞ þ χn2ðrÞâ†ðrÞ� þ F̂2ðrÞ; ð3bÞ

where N is the number of atoms, and χðrÞ with i ∈
fl1; l2; n1; n2g describes, respectively, the linear and non-
linear susceptibilities of the atoms whose exact expressions

are usually complicated depending on the laser parameters
and are given in the Supplemental Material (SM) [40].
Furthermore, all χjðrÞ are now spatial dependent, not only
on the transverse coordinates r⊥, but also the propagation
direction z, since we have considered a spatial-distributed
control field Ωc1ðrÞ. And F̂1ðrÞ and F̂2ðrÞ are the corre-
sponding quantum noise terms, respectively. In the follow-
ing, we will consider the case when the laser parameters are
tuned such that the linear and nonlinear absorptions are
negligible; thus we may first drop the quantum noise terms.
Note that here we have assumed the phase-matching
condition in the z direction kc1z þ kc2z ¼ 2kpz, with
kjz being the propagation wave vector of the field j
(j ∈ fc1; c2; pg). Then the wave equation is modified to

� ∂
∂ζ þ

i
2
∇2

ξ

�
âðξ; ζÞ ¼ iχlðξ; ζÞâðξ; ζÞ þ iχnðξ; ζÞâ†ðξ; ζÞ;

ð4Þ

where we have rescaled the spatial coordinates as ξ ¼
r⊥=S⊥ and ζ ¼ z=Sz, with Sz ¼ kpS2⊥, and χj ¼
g2N Szðχj1 þ χj2Þ=c with j ∈ fl; ng are real functions.
Apparently, it is impossible to obtain an analytical solution
for the wave equation (4); even a numerical calculation
turns out to already be very challenging due to the spatial-
dependent susceptibilities. Nevertheless, we have managed
to numerically solve Eq. (4) based on the decomposition of
the quantum field âðξ; ζÞ into a complete set of orthogonal
spatial modes,

âðξ; ζÞ ¼
X
j

âjðζÞujðξ; ζÞ; ð5Þ

where ajðζÞ is the annihilation operator at the propagation
distance ζ for the jth spatial mode ujðξ; ζÞ satisfying
∬∞
−∞dξu�jðξ; ζÞulðξ; ζÞ ¼ δjl and

P
ju

�
jðξ; ζÞujðξ0; ζÞ ¼

δðξ − ξ0Þ. In principle, fujðξ; ζÞg can be any complete
set of functions satisfying the orthogonal relations. For
the sake of simplicity, here ujðξ; ζÞ is chosen as the
eigenfunctions of the paraxial wave equation, i.e.,
ð∂ζ − i∇2

ξ=2Þujðξ; ζÞ ¼ 0, such that the diffraction term
can be canceled out, leading to

dÂðζÞ
dζ

¼ iMðζÞÂðζÞ; ð6Þ

where ÂðζÞ¼fâ0ðζÞ;â1ðζÞ;…;âN−1;â
†
0ðζÞ;â†1ðζÞ;…;â†N−1g,

with N being the number of modes needing to be
considered, and

MðζÞ ¼
�

CðζÞ DðζÞ
−D�ðζÞ −C�ðζÞ

�
ð7Þ

FIG. 1. Conjugate four-wave mixing process to realize beam
focusing and reduction of beam width uncertainty, where two
classical control fields, Ωc1 and Ωc2, and a quantum probe â are
applied. Experimentally, the four levels can be found from, for
example, the D1 line of 87Rb atoms.

PHYSICAL REVIEW LETTERS 122, 083601 (2019)

083601-2



is the propagation matrix determining the output quantum
field. CðζÞ and DðζÞ are defined as follows:

cpqðζÞ ¼
ZZ

∞

−∞
dξu�pðξ; ζÞχlðξ; ζÞuqðξ; ζÞ;

dpqðζÞ ¼
ZZ

∞

−∞
dξu�pðξ; ζÞχnðξ; ζÞu�qðξ; ζÞ;

with p; q ∈ f0; 1;…; N − 1g, and we have cpq ¼ c�qp and
dpq ¼ dqp for real χl and χn. Then the formal solution of
Eq. (6) can be given as

ÂðζÞ ¼ ei
R

ζ

0
dζ0Mðζ0ÞÂð0Þ: ð8Þ

Furthermore, the effective Hamiltonian for Eq. (6) can be
written as

ĤeffðζÞ ¼
1

2

XN
p;q¼1

cpqðζÞâ†pâq þ dpqðζÞâ†pâ†q þ H:c:; ð9Þ

where we have written âpðζÞ as âp for simplicity. Ĥeff

clearly shows that each spatial mode is coupled to all modes
including itself, where the first terms indicate photon
redistributions between different modes due to the excita-
tion of higher modes and account for classical physics like
the optically induced waveguide effects, and the second
terms introduce the quantum effects, i.e., quadrature
squeezing for all modes, and account for all the quantum
effects that will be illustrated below including beam
focusing, enhanced reduction of local intensity fluctuation,
and reduction of beam width uncertainty. Practically,
it is convenient to choose the control field Ωc1 to be a
fundamental Hermite-Gaussian (HG) beam, i.e.,

Ωc1ðr⊥; zÞ ¼
wcΩ

ð0Þ
c1

wcðzÞ
e−r

2⊥=½2w2
cðzÞ�e−ikcr2⊥=½4R2

cðzÞ�eiϕðzÞ;

with the propagation-dependent width wcðzÞ¼
wc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðz=zCÞ2

p
, radius of curvature RcðzÞ¼ðz2þz2CÞ=z,

and the Gouy phase ϕðzÞ ¼ arctanðz=zCÞ; here zC is the
associated Rayleigh length. The choice of a Gaussian
control beam will lead to a fully symmetric spatial
distribution in the transverse plane for an input Gaussian
probe, allowing us to consider only the 2D (x, z) propa-
gation dynamics. In order to realize beam focusing, here we
choose the spatial size of Ωc1ðr⊥; zÞ as wc ¼ 0.8wp, which
is smaller than that of the probe â. Furthermore, the input
Gaussian probe is assumed to be in a coherent state, i.e.,
hâji ¼ α0δj0, with α0 being the amplitude. We have also
chosen the HG mode basis for ujðξ; ζÞ and set N ¼ 40 at
which the numerical solutions have already converged. The
numerical results are shown in Fig. (2). Figure 2(a) plots the
field intensity hÎðx; zÞi ¼ P

jlhâ†jðzÞâlðzÞiu�jðx; zÞulðx; zÞ
for a short distance L ¼ 0.126zR, with zR ¼ 7.9 cm being

the Rayleigh length for the quantum probe; it can be seen
that the laser beam is gradually focused and amplified
during propagation. To be clearer, we have plotted the input
and output probe in Fig. 2(b) where the output probe has

been focused to a spatial width
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hŴðLÞi

q
≃ 0.55wp. Here

the width is defined in terms of the spatial variance of the
intensity distribution as follows according to Ref. [2]:

ŴðζÞ ¼ 1

hR∞
−∞ Îðξ; ζÞdξi

Z
∞

−∞
fðξÞÎðξ; ζÞdξ

¼ 1P
jhâ†j âji

X
jl

â†j âl

Z
∞

−∞
fðξÞu�jðξ; ζÞulðξ; ζÞdξ;

ð10Þ
where fðξÞ is a measure function which here is chosen as

fðξÞ ¼ 2ξ2, such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hŴð0Þi

q
¼ wp. It should be noted

that ŴðζÞ has the dimension of an area but not of a length
under this choice. In principle, one can also consider
different appropriate measures fðξÞ [2].
As mentioned above, the control field Ωc1 is taken to be

smaller than the probe in beam size, meaning that parts of
the probe lie outside the optical waveguide induced by Ωc1.
Thus, in the classical picture the probe should not be
focused. In order to exclude the possibility that the beam

FIG. 2. The effect of beam focusing as a result of MSM
squeezing. In (a) we show the full propagation dynamics of the
quantum probe intensity hâ†âi which are gradually focused and
enhanced. The black dashed lines indicate the beam width of
Ωc1. The output probe is plotted in (b) for both the classical and
quantum cases in order to exclude the classical effects. For
comparison, the input and output in the classical case are
multiplied by 250 and 103, respectively. The unique feature
of MSM squeezing is illustrated in both (c) and (d)
where the squeezing of âp is obtained versus the width and
central position of the LO. Parameters are as follows: the atomic
density n ¼ 3.0 × 1017 m−3, the medium length L ¼ 1.0 cm,
S⊥¼wp¼0.1 cm, Γ32¼2π×6.0MHz, Ωð0Þ

c1 ¼3Γ32, Ωc2¼10Γ32,
Δc1 ¼ 41.4Γ32, Δc2 ¼ −50Γ32, α0 ¼ 0.2.
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focusing is indeed not induced by classical waveguide
effects, we have also calculated the classical field propa-
gation dynamics as shown by the red dashed line in
Fig. 2(b). Evidently, the output field spreads and is totally
distorted when only taking the classical dynamics into
account, due to the excitations of higher-order spatial
modes. However, the situation becomes essentially differ-
ent in the quantum regime where all excitations are
accompanied by quadrature squeezing. As demonstrated
by the blue solid line, the quantum probe is considerably
narrowed in width. Additionally, it is significantly ampli-
fied, as illustrated by the scaling factor for the input. Note
that this amplification is due to the squeezing process and
thus is noiseless.
The beam focusing can be understood directly in terms

of local MSM squeezing in the transverse plane, as further
shown in Figs. 2(c) and 2(d) where we plot the squeezing as
a function of the waist and central position of the local
oscillator (LO) with Gaussian distribution fLOðx0; xÞ ∝
eðx−x0Þ

2=ð2w2
l Þ, respectively. Here the degree of squeezing S is

defined as

Sðx0; ζÞ ¼ 10 log10
hΔP̂2ðx0; ζÞi
hΔP̂2ðx0; 0Þi

; ð11Þ

with P̂ðx0; ζÞ ∝ i
R∞
−∞ dx½âðx; ζÞfLOðx0; xÞe−iθ − H:c:�. As

can be seen from Fig. 2(c), for wl ¼ 0.3wp the squeezing
for the output probe reaches the maximum at the central
area, and then oscillates and eventually decreases gradually
to 0, meaning stronger amplification in the probe center as
compared to the two wings, and consequently the beam
focusing. It should be emphasized here that beam focusing
is not possible for single-mode squeezing where the beam
width should remain as a constant, as suggested by
Eq. (10). Furthermore, the spatial oscillation in squeezing
can not be observed in single-mode squeezing where
squeezing should decrease monotonically as LO shifts
away from the probe center, and this is indeed due to
the interference between squeezing of different spatial
modes. In order to show the MSM nature of squeezing
more clearly, we reduce the LO waist to wl ¼ 0.2wp, where
stronger spatial oscillations can be seen.We also calculate the
squeezing against the ratio between the spatial size of the LO
and that of the probe also shown in Fig. 2(d). It can be seen
that the degree of squeezing reduces rapidly as wl=wp → 0.
Again, depending on the spatial location of the LO, the
squeezing degree will be different due to the interference
between different modes, as we explained above.
The MSM nature of squeezing in the system does not

only result in beam focusing, but also remarkable reduction
of beam width uncertainty and local intensity fluctuations
as depicted in Fig. 3. In Fig. 3(a), we calculate the relative

reduction of beam width uncertainty
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔŴ2i

q
=hŴi for the

output probe as a function of the amplitude of the coherent

incident probe jαj. As a comparison, we also compute the
width uncertainty for a single fundamental HG mode which
is in either the coherent or squeezed state. The squeezed
coherent state is chosen to be squeezed in amplitude, which
results in maximal reduction of width uncertainty (see SM
[40]). As compared to the case of single-mode squeezing of
−13.7 dB, which is the strongest degree of squeezing that
can be obtained in the case of wl ¼ wp in our results, as
shown Fig. 2(d), the relative reduction is always more
pronounced in the case of MSM squeezing, as shown by the
blue solid line in Fig. 3(a). In particular, for very weak
incident probe at jαj ¼ 1, the relative width uncertainty is
significantly reduced to 47.9%, which is smaller than
77.4% or 86.6% for single-mode squeezed or coherent
states, respectively. One should be noted that the absolute
reduction of width uncertainty in our result should be
approximately doubled since the width of the output probe
is reduced to 0.55wp. The underlying physics is that the
MSM squeezing leads to a much stronger suppression of
local intensity fluctuation in the central area of the probe
which determines the width uncertainty, in contrast to the
single-mode case, as plotted in Fig. 3(b); consequently, a
remarkable reduction in the width uncertainty, which is a
weighted summation of the local intensity fluctuation
according to Eq. (10), can be obtained. The effect of beam
focusing and reduction of width uncertainty is robust
against the control field parameters for a certain range,
as shown in the SM [40].
As mentioned earlier, the effect of simultaneous beam

focusing and reduction of width uncertainty can be directly
applied to, e.g., enhance the sensitivity of small displace-
ment measurements. In most of the position-dependent
measurements, the central issue is to determine the small
displacement of a laser beam by measuring the intensity
differences between the two halves of a split photodetector
[7,9]. The quantum limit for the smallest displacement that
can be faithfully determined from measurements is given
by dQNL ¼ ffiffiffi

π
p

wp=
ffiffiffiffiffiffiffiffi
4N0

p
when d ≪ wp [7] for a Gaussian

beam prepared in a coherent state. It is obvious that a large
number of photons, N0 ≫ 1, is thus required to resolve
small displacement. In our case of beam focusing and
reduction of width uncertainty with many squeezed spatial
modes, a simple expression for the limit is hard to obtain.

FIG. 3. The width uncertainty (a) and local intensity fluctua-
tions (b) versus the amplitude of the coherent incident probe.
Parameters are the same as in Fig. 2 except for α0 ¼ 0.2eiπ=2.
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Nevertheless, an upper-bound estimation is given by
dMSM ≤

ffiffiffi
π

p
w0
p=

ffiffiffiffiffiffiffiffi
4N0

0

p
, which captures the main contribu-

tions of MSM squeezing, where w0
p and N0

0 are the width

and photon number of the average-intensity mode v0ðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hâ†ðxÞâðxÞi

p
=
R hâ†ðξÞâðxÞidx in a newly defined mode

basis fvjðxÞg (see SM [40]). One can then find that the
limit of small displacement measurement can be signifi-
cantly enhanced due to the combined effect of beam
focusing and noiseless amplification of the probe in the
MSM squeezing process.
Discussions and conclusions.—Further enhancement on

the beam focusing and reduction of width uncertainty can
be expected by tuning the laser parameters including beam
width, detuning, and intensities of the control beam
Ωc1ðx; zÞ, as well as the atomic density. For example,
the probe beam may be further tightly focused by employ-
ing a control Ωc1ðx; zÞ with much smaller spatial size,
provided that the stronger diffraction of the small-sized
Ωc1ðx; zÞ can be reduced. This would require us to use an
atomic sample of short length, which in turn would require
higher atomic density to get an accountable amount of
MSM squeezing which ensures stronger beam focusing and
reduction of width uncertainty. However, in general, a
reliable prediction will be very difficult to make, considering
that a large number of spatial modes are involved and it is in
general a many-body problem with “time-dependent” inter-
action between them, as indicated by Eq. (9).
In our model, we have restricted ourselves to the paraxial

regime for proof-of-principle demonstration of simultane-
ous beam focusing and reduction of width uncertainty.
In general, extension to the nonparaxial regime should be
possible. However, the numerical calculation will be
extremely complicated. As we mentioned earlier, even in
the paraxial regime the numerical simulations become
already very challenging.
We have demonstrated the unexpected and surprising

effects of simultaneous beam focusing and remarkable
reduction of width uncertainty via MSM squeezing in a
conjugate four-wave mixing process. The beam focusing is
achieved due to the MSM squeezing which leads to
inhomogeneous spatial squeezing in the transverse plane.
Furthermore, the considerable reduction of width uncer-
tainty is due to the localized spatial squeezing which
reduces significantly the local quantum fluctuations. Our
results can be very useful in quantum metrology and
precision measurements such as detection of very small
displacement of particles in a biological system where only
weak quantum light is allowed.
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