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We theoretically study the Hall effect on interactingM-leg ladder systems, comparing different measures
and properties of the zero temperature Hall response in the limit of weakmagnetic fields. Focusing on SUðMÞ
symmetric interacting bosons and fermions, as relevant for, e.g., typical synthetic dimensional quantum gas
experiments,we identify an extensive regime inwhich theHall imbalanceΔH is universal and corresponds to a
classicalHall resistivityRH ¼ −1=n for a large class of quantumphases.Away from this high symmetry point
we observe interaction driven phenomena such as sign reversal and divergence of the Hall response.
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In its semiclassical approximation [1] the Hall response
of a conductor threaded by a weak perpendicular magnetic
field B is independent of the bar geometry. Because of
Galilean invariance, the ratio of the electric field Ey and
the longitudinal current density jx, the Hall coefficient
RH ¼ Ey=jxB, uniquely depends on the effective charge-q
carrier density n, RH ¼ −1=nq, providing an extraordinary
tool for the characterization of solid state systems
[2–4]. Nevertheless, deviations from parabolic bands in
realistic condensed matter systems lead dependence on the
curvature of the Fermi surface [5–7] and large deviations
of the Hall coefficient from its classical expressions are
expected in strongly correlated phases, in particular when
constrained to low dimensions, e.g., ladderlike systems.
Several theoretical approaches addressed the Hall effect in
strongly correlated quantum phases [8–16], but unbiased
calculations of the Hall coefficient remain challenging in
interacting systems.
Tremendous experimental progress with ultracold lattice

gases [17–21] in artificial magnetic fields paves the way to
the exciting study of the Hall effect in highly controllable
clean many-body systems. Several experiments have so far
observed theHall [17,22,23] and quantumHall [24,25] effect
and a systematic measurement of the Hall coefficient was
shown recently by Genkina et al. [26]. Several of these
experiments were performed with synthetic-lattice dimen-
sions [22,23,27–30], realizing Harper-Hofstadter (HH) like
models on a ladder [31,32]. Promising ongoing efforts
towards the realization of strong correlations in such systems
[20,33] motivate the detailed theoretical analysis of the Hall
effect in interacting many body systems.
In this Letter, we study the Hall response of strongly

interacting fermions and bosons on quantum ladders. We
introduce the Hall imbalance ΔH, which can be directly
observed in ultracold atom experiments. The key result is the
observation of an extensive universal regime of parameters,
where ΔH is constant, corresponding to RH ¼ −1=n

behavior, independent of particle statistics and interaction
strength. Bymeans of numericalmatrix product stateDMRG
simulations [34,35], supported by analytical arguments, we
analyze the robustness of this effect and show its relevance
for quench dynamics experiments with state-of-the-art
quantum gases with synthetic dimensions. We discuss the
breaking of this universality out of SUðMÞ symmetry, in
which divergencies or sign reversals of ΔH signal phase
transitions. We also provide an approximate formula to
calculate ΔH at equilibrium with open boundary conditions.
We consider HH ribbons on M legs, see Fig. 1(a). The

Hamiltonian is H ¼ Hx
kin þHy

kin þHint, with hopping
along the ladder Hx

kin ¼ −tx
P

j;m eiχðm−m0Þ=Ma†j;majþ1;m þ
H:c: fm0 ¼ ðM − 1Þ=2 and m ∈ ½0;M − 1�g and in the
transverse direction Hy

kin ¼ −ty
P

j;m a†j;maj;mþ1 þ H:c.

Here, að†Þj;m is a fermionic or bosonic annihilation(creation)
operator on the ladder rung j and leg m. In this work, we
consider on-rung interactions as relevant for synthetic
dimension experiments Hint ¼

P
j;m;m0 ðUmm0=2Þnj;mnj;m0 ,

with nj;m ¼ a†j;maj;m. Typical ultracold atom experiments
realize an approximate SUðMÞ symmetry Um;m0 ¼ U [36].
Recent experiments, such as Ref. [26], accelerate the

lattice gas by a linear potential Δμ
P

jmjnjm. Subsequent
monitoring of the evolution of the spin resolved momentum
distribution allows for the measurement of the density
polarization Py ¼ 2

P
M
m¼0ðm −m0Þnj;m and the current

Jx ¼ −itx
P

j;m eiχðm−m0Þa†j;majþ1;m þ H:c: as function of
time τ. Figures 1(a)–1(c) sketch this procedure for a M ¼
3 leg ladder system, initially prepared in the ground state.
After the quench for τ > 0 a total current develops hJxi ≠ 0
as well as a finite density imbalance hPyi ≠ 0. Both
quantities essentially grow linearly with τ and, hence, the
resulting Hall imbalance

ΔH ¼ hPyi
χhJxi

����
χ→0

ð1Þ
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oscillates around a finite constant value for small enough
times τ ≲ L=2t as long as the finite size of the system can be
neglected, see Fig. 1(c).
In the case of adiabatic dynamics, the Hall imbalance (1)

can be equivalently derived at equilibrium for the same
systemon a ringwithL rungs threaded by aAharonov-Bohm
fluxϕ, i.e., with periodic boundary conditions (PBC) along x
and the substitution a†j;maj;mþ1 → eiϕ=La†j;maj;mþ1 [39]. The
flux ϕ induces a persistent current hJxi ¼ L∂ϕhHijϕ→0,
leading to a finite imbalance (1) for χ ≠ 0. This reactive Hall
response has been discussed in detail by Prelovšek et al. [11]:
theHall coefficientRH is found by adding an extra termEyPy

to the Hamiltonian, adjusted such that hPyi ¼ 0 [11,40].
Nevertheless, the Hall imbalance ΔH is a more direct and
simpler observable in recent quantum gas experiments and
we will consider both quantities in the following.
Remarkably, bothΔH andRH can be expressed as derivatives
of the ground state energy E0ðϕ; χ; EyÞ [40], LΔH ¼
∂ϕχEy

E0=∂ϕϕE0 andRH ¼ −LΔH=∂EyEy
E0 forϕ, χ,Ey ¼ 0.

We first identify the universal regime of interest shown in
Fig. 1, in which ΔH is a constant function of n, corre-
sponding to RH ¼ −1=n, which can be well understood in
free particle systems. For χ, Ey ¼ 0, the generic spectrum
of M coupled wires on the lattice coupled by hopping to
each other is made ofM bands εpðkÞ ¼ εxðkÞ þ εyðpÞ, that
are labeled with the index p ∈ ½0;M − 1�, in k space (wave
vector along the x direction). As shown in Fig. 1(b) the

bands are split by the transverse hopping strength ty. In the
specific case of the HHmodel we have εxðkÞ ¼ −2tx cosðkÞ
and εyðpÞ¼−2tycos½πðpþ1Þ=ðMþ1Þ�. Analytical expres-
sions of ΔH are readily found in perturbation theory in χ,
Ey, ϕ [40]. For noninteracting fermions one finds

ΔH ¼
P

p<PvF;pIpP
p<PvF;p

; RH ¼ −ΔHP
p<PnpIp

: ð2Þ

in which vF;p and np are the Fermi velocity and density of
fermions in band p and P ≤ M is the number of occupied
bands, see Fig. 1(b). The coefficients Ip depend on the
details of the Hamiltonian [40]. Figure 1(d) shows exam-
ples of ΔH as a function of the total density n ¼ P

pnp,
from Eq. (2). The Hall imbalance ΔH exhibits a series of
kinks, corresponding to the change in the number of
occupied bands P. It is remarkable, as shown in panels
(c)–(d) of Fig. 1, that sudden quench behavior (even though
Δμ is a “weak” perturbation) is perfectly reproduced by
equilibrium calculations. Because of particle-hole sym-
metry the Hall response vanishes identically at half filling
[13] and for the case of hole conductance n > 0.5 the sign
of the Hall imbalance is inverted [11]. The Hall response
(2) is finite when only the lowest band p ¼ 0 is occupied:

ΔH ¼ qI0ðM; t⊥Þ and RH ¼ −1=n: ð3Þ

This is an interesting result as it recovers exactly the usual
1=n behavior for RH of free particles in the continuum,
generally violated on the lattice [5–7] and always applies
for noninteracting bosons as well [40]. Note, that Eq. (3)
shows the possibility to observe a finite Hall response in
systems in which only two Fermi points are present, for
which one would naively have expected a single chain
behavior and thus the absence of Hall effect. This Letter
focuses on the regime corresponding to Eq. (3). We will
now provide numerical calculations supported by analytical
arguments that this observation carries over to the corre-
lated regime for generic SUðMÞ symmetric bosons or
fermions in a large family of ground states.
Figures 2(a)–2(b) show DMRG results for ΔH for

interacting fermions on M ¼ 2 leg ladder as function of
n and U (see the Supplemental Material [40] for further
examples). The solid lines of Fig. 2(b) indicate the different
phase transitions for χ ¼ 0 known for the integrable Fermi-
Hubbard model for finite ty. In the fully polarized (FP)
state, for which all N particles occupy the lowest band
p ¼ 0, we find ΔH ¼ −1=2 is independent of interaction
strength and density in perfect accordance with Eq. (3).
Because of particle-hole symmetry in the Mott (MI)

and band insulator (BI) phases at half filling ΔH vanishes
identically. As the fully paired phase (PSF), superfluid of
composite bosonic pairs, for attractive interactions can be
related to the insulating MI phase by means of a Shiba
transformation [48], we also find here identically vanishing

FIG. 1. (a) Particle (dots) and current (arrows) density on anM-
leg ladder threaded by a flux χ, after applying a tilt (M ¼ 3,
subtracting τ ¼ 0 values for clarity). (b) Band structure of theM-
leg ladder as function of the wave-vector k along the x direction.
(c) Quench dynamics of the Hall imbalance ΔH , polarization
hPyi=χ, and current hJxi (solid, dashed, and dotted lines,
respectively) for tilted free fermions (tx ¼ ty, n ¼ 1=5, χ ¼ 0.01,
Δμ ¼ 0.01tx=L, see text). (d) ΔH for free fermions as function of
n. Solid lines correspond to Eq. (2), and points with error bars
to time averages of the dynamics in (c). ΔH is constant when
only the lower band is occupied and kinks correspond to the
occupation of upper bands in (b).
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ΔH. In the partially paired (PP) two component phase (with
a central charge c ¼ 2), as in the noninteracting case, ΔH
strongly deviates from the universal form interpolating
smoothly between results of the FP and PSF phases.
Remarkably, this universal behavior carries over to inter-

acting bosons. Figure 2(c) shows the universal values for
softcore SUðMÞ symmetric bosons for M ¼ 2, 3, and 4,
different densities and interactions strengths. As anticipated,
ΔH is just given by Eq. (3), that is a function of ty=tx,
independent of the interaction strength. Note, that Jx and Py

themselves exhibit a complicated dependence on the param-
eters n andU. Interestingly, for the bosonic model, as it is not
particle-hole symmetric, we observe approaching of the same
finite constant even for half filling, where for sufficiently
strong interactions the system enters an insulating state. In
order to verify the universality of the corresponding Hall
coefficient, in Fig. 2(d) we show RH for some of the previous
examples.As conjecturedwe findRH ¼ −1=n for bosons and
fermions independent of M, density, and interaction strength
as long as only the lower band p ¼ 0 is occupied.
The universality of Eq. (3) is understood by inspecting

the expectation values of Py and Jx in general many-body
perturbation theory. Upon introduction of the eigenstates
fjαig of Hðχ ¼ 0Þ, of energy Eα, with j0i the ground state,
the leading contribution to the polarization reads [40]

h0jPyj0i ¼ χ
X

α≠0

h0jPyjαihαjJ̃xj0i þ c:c:

E0 − Eα
; ð4Þ

in which we introduced the asymmetric current J̃x ¼
−tx

P
j;m ieiϕ=Lðm −m0Þa†j;majþ1;m þ H:c: Consider the

commutator ½Py;Hðχ¼0Þ�¼P
j;p;p0Cp;p0 ðϵp−ϵp0 Þã†j;pãj;p0

in which we switched to operators aj;p diagonalizing
Hy

kin and thus annihilating particles on band p (the factor
Cp;p0 is given in the Supplemental Material [40]). We
consider the FP ground state, stabilized, e.g., by repulsion,
large ty, or bosonic enhancement. For excited states jαpi,
with 1 particle in band p > 0, the commutator leads to the
fact that ½Eαp − E0�hαpjPyj0i ¼ ½ϵyðpÞ − ϵyð0Þ�hαkjPyj0i.
For the cases in which hαpjPyj0i ≠ 0, the energy difference
of the interacting many-body states becomes trivial
Eαp − E0 ¼ ϵyðpÞ − ϵyð0Þ. As an important consequence,
the ground state polarization reads hPyi ¼ χI0h0jJxj0i
[40], leading to the remarkably simple expression
Eq. (3) for the Hall imbalance for any single component
SUðMÞ symmetric quantum state on a M-leg ladder. The
behavior RH ¼ −1=n follows by a similar argument to
calculate ∂2E0=∂E2

y in perturbation theory [40]. Note that
for generic ladder models these results are generally true in
the large coupling limit ty=tx ≫ 1.
We consider now breaking the SUðMÞ symmetry. Note,

that the Hall response (3) for fermions in the lowest band
is robust, since after diagonalization of Hy

kin, Hint takes
the general form Hint ¼

P
p;p0;q;q0 Up;p0;q;q0a

†
j;paj;p0a†j;qaj;q0 ,

which projects to zero if only the lowest band p ¼ 0 is
occupied. This is not the case for bosons. Important insight
into thedeviations of thebosonicHall effect fromEq. (3)may
be obtained by a simple mean-field description, justified for
typical experiments with large particle numbers per site [26].
For small fields χ and ϕ, each site can be described by a
coherent state with fixed density nj;m ¼ nþ ðm −m0Þδn,

FIG. 2. Hall effect in SUðMÞ symmetric ladders. (a) and (b) ΔH for M ¼ 2 fermions with on-rung interactions U (DMRG data,
tx ¼ ty). (a) Data for different fillings n ¼ 1=3, 1=4, and 1=8—symbols depict PBC results for L ¼ 24, 36, 48 (empty circle, empty
square, cross) rungs for n ¼ 1=3. The other lines correspond to Δ0

H (OBC, L ¼ 96 rungs). The solid lines in (b) correspond to the phase
transitions for the one-dimensional Fermi-Hubbard model at χ ¼ 0 with Zeeman field of strength ty [48]. The phases include fully
polarized, partially paired, and paired superfluid, and Mott insulator and band insulator phases (see text for details). (c) ΔH of the
SUðMÞ-symmetric Bose Hubbard model for M ¼ 2 and tx ¼ ty, n ¼ 1=2, and n ¼ 1=4 as well as tx ¼ ty=2, n ¼ 1=4 (small symbols:
cross, empty circle, empty triangle) andM ¼ 3, tx ¼ ty, n ¼ 1=8 (inverted triangle) with (bottom to top) L ¼ 24, 28, 32, and 36 rungs—
larger symbols depict the extrapolated value in the thermodynamic limit L → ∞ [40]. The filled diamond symbols show Δ0

H data for
M ¼ 2 and 3 and 4 leg ladders (L ¼ 60, n ¼ 1=2M). The horizontal dashed lines depict Eq. (3). Scaled by γ ¼ 4=M2 for clarity. (d) 1=n-
behavior (dotted lines) of the Hall resistivity RH forM ¼ 2 bosons withU ¼ 16tx, tx ¼ ty (cross) and U ¼ 8t, tx ¼ ty=2 (empty square)
as well as fermions U ¼ tx ¼ ty (plus).
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leading to a classical description of the system [49,50]. The
density variation δn is found by minimization of the energy
hHi and the total current is given by the twist between
subsequent sites hJxi ¼ 4txn sinðϕ=LÞ ≈ 4txnϕ=L. The
Hall imbalance ΔH is then derived and for M ¼ 2 [40]

ΔH ¼ −
tx

2ty þ 2nðU00 −U01Þ
: ð5Þ

A rich phenomenology of the Hall effect is thus suggested.
At the SUð2Þ symmetric point, the interaction part of the
ground-state energy simplifies to Un4 and, hence, becomes
independent of rung density variations δn, which allows for
an intuitive explanation of the universal Hall response in this
regime:ΔH remains independent ofU andn obeying Eq. (3).
Examples for the generally more complex dependence of

ΔH on filling and interaction strengths are shown in Fig. 3
for a strongly interacting M ¼ 2 Bose-Hubbard model for
several ratios of on-rung and on-site interactions δ ¼
U01=U00. In the low filling regime n → 0 we observe a
good qualitative agreement with the mean field result of
Eq. (5) (inset of Fig. 3). Generally the Hall imbalance may
unveil the presence of phase transitions and gaped phases;
e.g., we observe a finite jump in ΔH close to the commen-
surate-incommensurate phase transition at half filling
(compare Fig. 3, δ ¼ 0.5). The more remarkable is the
vanishing of these features at the exact SUð2Þ point
(δ ¼ 1 curve in Fig. 3).
While the mean-field description leading to Eq. (5)

indicates that for U00 < U01 the Hall imbalance vanishes
with increasing density or interaction strength, in the strong
coupling regime for δ → 0 (and n > 1=2) we find an

interesting sign change of the Hall imbalance. This property
can be attributed to the restored particle hole symmetry in the
hardcore boson limit which leads to the same sign change as
discussed above for free fermions. We may also understand
this as a precursor of the topological phase transition
previously reported previously by Huber et al. [15,16].
For large fillings and δ > δc, for some critical δc ¼

δcðn; ty=txÞ > 1, we observe a quantum phase transition to
a biased ladder phase (BLP), where a majority of the
particles accumulates on one leg of the ladder [40],
corresponding to a ferromagnetic state with fully polarized
spin [51–53]. Because of the spontaneous breaking of Z2

symmetry in the thermodynamic limit this state exhibits
hPyi ≠ 0 at χ ¼ 0 and, hence, we expect a diverging Hall
imbalance [40]. This can be also seen in the classical model
Eq. (5) in which for n>ty=ðU01−U00Þ the system becomes
unstable and develops a spontaneous imbalance hPyi>0 at
vanishing field, resulting in a diverging Hall imbalance.
Possibly such a giant Hall response can be observed within
ferromagnetic alkali species such as 23Na or with the help of
tuning of scattering lengths by means of optical Feshbach
resonances [54].
We conclude by discussing the particular case in which

½Jx;H� ¼ 0, valid, e.g., for noninteracting particles, but
also interacting fermions when projected on the lower
bands. In this case, the off-diagonal matrix elements of Jx
vanish, leading to a compact simplified expression for ΔH,
Δ0

H ¼ P
α≠0ðh0jPyjαi=E0 − EαÞðhαjT̃xj0i=h0jTxj0iÞ [40].

For interacting systems, one generally finds Δ0
H ≠ ΔH

(except for the interesting cases mentioned above), but
the former is a remarkably good approximation in many
cases, see Figs. 2 and 3. It is also remarkable thatΔ0

H can be
efficiently evaluated with open-boundary conditions (OBC)
as well by means of DMRG calculations [40].
Summarizing, we have studied the Hall response of an

interacting ladder. While generally the Hall effect strongly
depends on the precise type and form of interactions, for
certain single component states ofSUðMÞ symmetricmodels
we observed the Hall imbalance ΔH to be independent from
filling and interactions strength, corresponding to a universal
1=n behavior of theHall constantRH. Note, that this property
remains true for strongly interacting particles where an
interpretation of n as effective density of long-lived
quasiparticles is not necessarily correct. In this work we
have focused on the cases relevant or compatible with
the experimental measurement procedures such as
Refs. [22,23,25,26], and the results should be reproducible
with current experimental setups (see SupplementalMaterial
for examples on experimental parameters). In general, the
reactive Hall coefficient may depend on the details of the
measurement procedure [55]. Further interesting extensions
could include the role of interactions at finite field strengths
where already in two-ladder systems a wealth of quantum
phases and phenomena has been reported [51–53,56–78],

FIG. 3. Hall effect out of SUð2Þ-symmetry for the Bose-
Hubbard model. ΔH as function of the density n for different
values of interactions δ ¼ U01=U00 ¼ 0, 0.5, 1.0 and 1.4
(extrapolated DMRG data for L ¼ 24, 28 and 32 rungs,
nmax ¼ 2, U00 ¼ 24t, ty ¼ tx). Dashed lines depict Δ0

H . Symbols
with error bars are time averages of the quench simulations for
10 < τ=tx < 20 (L ¼ 48 rungs, Δμ ¼ 0.05tx=L, χ ¼ 0.01). Inset
A shows a zoomed view of the plot. Inset B depicts the coherent
state approximation Eq. (5) for U00 ¼ tx ¼ ty and the same
values of δ ¼ 0, 0.5, 1, and 1.4 (top to bottom).
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which might exhibit unconventional Hall responses observ-
able in current quantum gas experiments.
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