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Starting with the solution to the Bethe-Salpeter equation for the pion, in a beyond rainbow-ladder
truncation to QCD’s Dyson-Schwinger equations, we determine the pion’s lz ¼ 0 and jlzj ¼ 1 leading
Fock-state light-front wave functions (LFWFs) [labeled by ψ lzðx; k2TÞ]. The leading-twist time-reversal
even transverse momentum dependent parton distribution function (TMD) of the pion is then directly
obtained using these LFWFs. A key characteristic of the LFWFs, which is driven by dynamical chiral
symmetry breaking, is that at typical hadronic scales they are broad functions in the light-cone momentum
fraction x. The LFWFs have a nontrivial ðx; k2TÞ dependence and in general do not factorize into separate
functions of each variable. For k2T ≲ 1 GeV2 the k2T dependence of the LFWFs is well described by a
Gaussian; however for k2T ≳ 10 GeV2 these LFWFs behave as ψ0 ∝ xð1 − xÞ=k2T and ψ1 ∝ xð1 − xÞ=k4T ,
and therefore exhibit the power-law behavior predicted by perturbative QCD. The pion’s TMD naturally
inherits many features from the LFWFs. The TMD evolution of our result is studied using both the b� and ζ
prescriptions which allows a qualitative comparison with Drell-Yan data.
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Light-front quantization and the associated light-front
wave functions (LFWFs) provide a powerful framework
with which to study quantum chromodynamics (QCD)
[1,2]. Hadron observables such as form factors, parton
distribution functions (PDFs), and their multidimensional
counterparts such as generalized and transverse momentum
dependent PDFs (TMDs) can each be expressed as overlaps
of LFWFs [3,4]. Therefore LFWFs allow features of
apparent disparate hadron observables to be straight-
forwardly related to underlying quark-gluon dynamics in
a QCD Fock-state expansion. In principle, the LFWFs
can be computed by diagonalizing the light-cone QCD
Hamiltonian operator, using methods such as discretized
light-cone quantization [5] and basis light-front quantiza-
tion [6,7], or by effective interaction methods such as
holographic QCD [8].
Another approach used to study QCD, which is explic-

itly Poincaré covariant, is provided by judicious truncations
to QCD’s Dyson-Schwinger equations (DSEs) [9–11]. In
the DSE framework hadron states are obtained as solutions
to Poincaré-covariant bound-state equations such as the
Bethe-Salpeter and Faddeev equations [12,13]. Insights
into numerous aspects of hadron structure have been
revealed using the DSEs [11,14], with particular success
in understanding the pion as both a relativistic bound state
of a dressed quark and dressed antiquark, and the
Goldstone mode associated with dynamical chiral sym-
metry breaking (DCSB) in QCD [11,15–17]. DSE solu-
tions to the Bethe-Salpeter equation (BSE), which naturally
contain an infinite number of Fock states and can therefore
encapsulate key emergent QCD phenomena such as DCSB
and quark confinement, provide an excellent starting point

from which to extract the pion’s LFWFs. In particular, the
properties of the LFWFs can then be clearly connected to
underlying quark-gluon dynamics as expressed in the
dressing functions for propagators and vertices. The calcu-
lation of the pion’s leading Fock-state LFWFs using the
DSEs, and the application of these LFWFs to a calculation
of the pion’s leading-twist time-reversal even TMD is the
focus of this Letter. Such a study is timely because the
proposed electron-ion collider [18] could study the partonic
structure of the pion and kaon [19].
In the light-front formalism a hadron state can be

expressed as the superposition of Fock-state components
classified by their orbital angular momentum projection lz
[20]. For the pion the minimal (jq̄qi) Fock-state configu-
ration reads [20,21] jπþðpÞi¼ jπþðpÞilz¼0þjπþðpÞijlzj¼1.
The nonperturbative content of each state is contained in
the LFWFs [4], labeled by ψ0ðx; k2TÞ for lz ¼ 0 and
ψ1ðx; k2TÞ for jlzj ¼ 1, where kT is the transverse momen-
tum of the quark and x ¼ ðkþ=pþÞ is its light-cone
momentum fraction.
The pion’s minimal Fock-state LFWFs can be obtained

from the pion’s Bethe-Salpeter wave function via [22]

ψ0ðx; k2TÞ ¼
ffiffiffi
3

p
i
Z

dkþdk−

2π

× TrD½γþγ5χðk; pÞ�δðkþ − xpþÞ; ð1Þ

ψ1ðx; k2TÞ ¼ −
ffiffiffi
3

p
i
Z

dkþdk−

2π

1

k2T
× TrD½iσþikiTγ5χðk; pÞ�δðkþ − xpþÞ: ð2Þ
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The Bethe-Salpeter wave function for the πþ is
defined by the quark-antiquark correlator χðk; pÞ ¼R
d4ze−ik·zh0jT uðzÞd̄ð0ÞjπþðpÞi [23,24] and can be

expressed as χðk; pÞ ¼ SðkÞΓðk; pÞSðk − pÞ, where SðkÞ
is the dressed quark propagator and Γðk; pÞ the pion’s
homogeneous Bethe-Salpeter amplitude [9,25].
The BSE, whose solution gives the wave function

χðk; pÞ, self-consistently sums of an infinite number of
Fock components. For example, in the rainbow-ladder
trunction of QCD’s DSEs (In this work will use a beyond
rainbow-ladder trunction to the DSEs called the DCSB-
improved truncation.) χðk; pÞ not only contains the min-
imal jq̄qi Fock state but also the Fock components with any
number of gluons: jq̄qg…i. In the DSEs it is this sum over
the infinite tower of gluons that gives rise to emergent
phenomena such as DCSB and confinement, which is then
encoded in χðk; pÞ. A key advantage of projecting out the
LFWFs from the Bethe-Salpeter wave function, as done in
Eqs. (1) and (2) for the minimal Fock state, is that effects
from these emergent phenomena are encoded in all LFWFs.
In addition, an analogous procedure to that defined in
Eqs. (1) and (2) can be used to obtain higher Fock-state
LFWFs, such as those that correspond to jq̄qgi states, via
project from χðk; pÞ and elements of its Bethe-Salpeter
kernel. Since χðk; pÞ is the same for each LFWF projection,
such a method leaves the LFWFs corresponding to other
Fock components unchanged. Therefore, this method in
principle allows for the self-consistent and systematic
solution of the tower of LFWFs, allowing the importance
of higher Fock components in hadron structure and
reactions to be systematically studied.
The pion’s Bethe-Salpeter wave function can be calcu-

lated within the DSE framework [26], via a self-consistent
solution to the quark gap equation for SðkÞ, and the
homogeneous BSE which gives Γðk; pÞ. To solve these
equations a truncation to the interaction kernel must be
employed, such that the key symmetries of QCD are
maintained. In the context of the pion the axial-vector
Ward-Takahashi identity plays an important role [27], as it
is an expression of chiral symmetry and its dynamical
breaking [28]. The simplest symmetry-preserving DSE
truncation is rainbow ladder [27,29,30]. Here we use a
modern extension known as the DCSB-improved trunca-
tion, that includes an anomalous chromomagnetic moment
term in the dressed quark-gluon vertex [31], which in the
chiral limit can only exist through DCSB. This truncation
provides the most realistic description of the pion currently
available within the DSEs formalism [11].
The DSEs are formulated in Euclidean space and

therefore a direct calculation of light-cone dominated
quantities is challenging. However, an arbitrary k2T-
dependent moment of the pion’s LFWFs, defined by
hxmilzðk2TÞ ¼

R
1
0 dxx

mψ lzðx; k2TÞ can be directly calculated,
and the LFWFs for the pion can then be accurately
reconstructed from these moments. In fact, an arbitrary

moment of a LFWF can be expressed as hxmilzðk2TÞ ¼R
1
0 dα αm

R
dβdγ flzðα; k2T; β; γÞ and therefore the LFWF is

identified as ψ lzðx; k2TÞ ¼
R
dβdγ flzðx; k2T; β; γÞ [22,32].

To aid the calculation of the moments we use an
accurate parametrization of numerical solutions to the gap
and BSEs in the DCSB-improved truncation to the DSEs
[17,31]. The dressed quark propagator is parametrized
with two pairs of complex conjugate poles [33,34]:
SðkÞ ¼ P

2
i¼1½zi=ði=kþmiÞ þ z�i =ði=kþm�

i Þ�, where zi
and mi are complex numbers determined by fitting to
the numerical DSE solution to the gap equation. The
general Bethe-Salpeter amplitude for the pion reads
[15,25]: Γπðk; pÞ ¼ γ5½iEðk; pÞ þ pFðk; pÞ þ =kGðk; pÞþ
½p; q�Hðk; pÞ�. We retain the dominant E and F ampli-
tudes, and further details about the model are provided in
the Supplemental Material [35] and Refs. [17,31].
Results for the pion’s minimal Fock-state LFWFs

are illustrated in Fig. 1, where the LFWFs satisfy the
normalization condition

R
1
0 dx

R ½d2kT=ð2πÞ3�½jψ0ðx;k2TÞj2þ
k2T jψ1ðx;k2TÞj2�¼1. For each x, the k2T dependence of
the LFWFs exhibits a Gaussian-like behavior for
k2T ≲ 1 GeV2, a transition then begins to occur and for k2T ≳
10 GeV2 the LFWFs become ψ0ðx; k2TÞ ∝ xð1 − xÞ=k2T and
ψ1ðx; k2TÞ ∝ xð1 − xÞ=k4T , which matches the power-law
behavior predicted by perturbative QCD [21]. The
factorization between x and k2T is only seen in the
scaling regime, where the onset reflects the ultraviolet
behavior of the Bethe-Salpeter dressing functions which
behave as E, F ∼ 1=k2 for k2 ≳ 10 GeV2 [27] (k is the
relative momentum).
An important characteristic of our LFWF results, when

viewed as a function of x, is that they are broad with
significant support near the x ¼ 0, 1 end points for
k2T ≲ 1 GeV2. As discussed in Ref. [17] in the context
of the pion’s parton distribution amplitude (PDA), this
broadening of the LFWFs is directly linked to DCSB;
however this effect diminishes for k2T ≫ Λ2

QCD where the x
dependence of both LFWFs is the same as the asymptotic
pion PDA [41]. This manifestation of DCSB on the light
front will therefore have a material impact on observables
sensitive to the LFWFs in the region k2T ≲ 1 GeV2. The
lz ¼ 0 LFWF is concave in x with a maximum at x ¼ 1=2
for all k2T , whereas orbital angular momentum effects
causes the jlzj ¼ 1 LFWF to have a slight double-humped
structure for quark transverse momentum in the range
0.5≲ k2T ≲ 5 GeV2, which is evident in Fig. 1. Near the
x ¼ 0, 1 end points we find that each LFWF behaves
linearly as a function of x, that is, as x → 1 we have
ψ lzðx; k2TÞ ∼ 1 − x, with analogous results near x → 0

because ψ lzðx; k2TÞ ¼ ψ lzð1 − x; k2TÞ. This linear behavior
in 1 − x is a necessary property of the LFWFs if they are to
give a pion TMD or PDF behaving as fðxÞ → ð1 − xÞ2 near
x ¼ 1, as predicted by perturbative QCD [42–44].
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With the pion’s LFWFs in hand it is straightforward to
determine properties of the pion. We focus on the pion’s
leading-twist time-reversal even TMD, which in terms of
the pion’s minimal Fock-state LFWFs reads [4]

fμ0π ðx; k2TÞ ¼ ½jψμ0
0 ðx; k2TÞj2 þ k2T jψμ0

1 ðx; k2TÞj2�=ð2πÞ3; ð3Þ

where we have made explicit the renormalization scale
dependence. At the initial renormalization scale (μ0) the
pion’s valence quark PDF is related to the TMD by
fμ0π ðxÞ ¼

R
d2kTf

μ0
π ðx; k2TÞ, where the normalization con-

dition for the LFWFs guarantees baryon number conser-
vation. (This naive relation between the TMD and PDF is
only valid at the model scale, since evolution to a scale
μ ≠ μ0 breaks this correspondence.) The symmetry under
x → 1 − x of the LFWFs ensures hxiμ0 ¼ 0.5 and therefore
the two valence quarks carry all the light-cone momentum.
This is to be expected because only the leading Fock-state
LFWFs are used to determine the pion’s PDF. By associat-
ing the renormalization scale with the resolving scale
(μ20 ¼ Q2), it is clear that as μ20 gets larger higher Fock
states play an increasingly important role, and therefore the
minimal Fock-state contributions calculated here can only
dominate at a low resolving scale [20]. The renormalization
scale associated with our DSE calculation is determined

such that the momentum fraction carried by the valence
quarks agrees with results from a πN Drell-Yan analysis:
2hxiv ¼ 0.47ð2Þ [45,46] at a scale of Q2 ¼ 4 GeV2. NLO
DGLAP [47] gives μ0 ¼ 0.52 GeV.
Our DSE result for the time-reversal even u-quark TMD

in the πþ, obtained from the LFWFs using Eq. (3), is given
in the upper panel of Fig. 2. These calculations are
performed with equal current quark masses. Several fea-
tures of the LFWFs are immediately reflected in the TMD
at the hadronic scale, notably in the limit x → 1 the TMD
behaves as fuπðx; k2TÞ ∝ ð1 − xÞ2 for all k2T , in agreement
with perturbative QCD [44]. As k2T becomes large
our TMDs exhibits two scaling regimes, for k2T ≳
10 GeV2 the pion’s TMD has a power-law behavior of
fuπðx; k2TÞ ∝ 1=k6T , which reflects the dominance of
ψ1ðx; k2TÞ in this region. The lz ¼ 0 LFWF only begins
to dominate the TMD for k2T ≳ 100 GeV2, where we obtain
our asymptotic result for the TMD: fuπðx; k2TÞ ∝
x2ð1 − xÞ2=k4T . At the low hadron scale our DSE result
for the pion’s TMD is a broad unimodal function of x for
k2T ≲ 0.7 GeV2; however in the range 0.7≲ k2T ≲ 5 GeV2

the slight double-humped feature of ψ1ðx; k2TÞ manifests in

FIG. 2. Upper panel: DSE result for the time-reversal even u-
quark TMD of the pion, fuπðx; k2TÞ, at the model scale of
μ20 ¼ 0.52 GeV2. Lower panel: Analogous result evolved to a
scale of μ ¼ 6 GeV using TMD evolution with the b� prescrip-
tion and g2 ¼ 0.09 GeV [51]. The TMDs are given in units of
GeV−2 and k2T in GeV2.

FIG. 1. Upper panel: DSE result for the pion’s lz ¼ 0 minimal
Fock-state LFWF. Lower panel: Analogous result for the pion’s
jlzj ¼ 1 minimal Fock-state LFWF. The jlzj ¼ 0; 1 LFWFs have
units of GeV−1;−2 and k2T is given in GeV2.
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the TMD. This double-humped structure is seen more
prominently in some light-front constituent quark [4] and
holographic QCD models [48]. Because our TMD result
scales as fuπðx; k2TÞ ∝ 1=k4T , our result for the average k

2
T of

the TMD is logarithmically divergent if hk2Ti is defined in
the usual way [49]. We therefore study two methods: fitting
a Gaussian ansatz to our TMD for k2T < 1 GeV2 gives
hk2Ti ¼ 0.16 GeV2, and using the Bessel-weighted defini-
tion of Ref. [50] with bT ¼ 0.3 fm gives hk2Ti ¼ 0.19 GeV2

at the model scale. Therefore, the average transverse
momentum is typical of the infrared scale of the dressed
quark mass.
To compare our results with data it is essential to perform

TMD evolution [52,53]. TMD evolution is governed by
renormalization group equations involving two scales, μ
and ζ, which are set to the hard scale μ2 ¼ ζ ¼ Q2 [54].
The lower panel of Fig. 2 presents our pion TMD result
evolved to a scale of μ ¼ 6 GeV, which is a typical scale
associated with the E-615 pion-induced Drell-Yan experi-
ment [55]. The illustrated result uses the b� prescription
[56], where we follow closely the implementation of
Refs. [48,51], and to parametrize the nonperturbative
behavior of the ζ evolution kernel [53] we choose g2 ¼
0.09 in accordance with Ref. [48]. The effect of the TMD
evolution is dramatic, shifting significant strength to small
x and large k2T , with a factor of 10 reduction in the
magnitude of the TMD near x ∼ 1=2, k2T ∼ 0 compared
to the model scale result. For the evolved TMD we find
hk2Ti ¼ 0.69 GeV2 using the Gaussian fit method, and
the Bessel-weighted definition with bT ¼ 0.3 fm gives
hk2Ti ¼ 0.49 GeV2.
To attempt a quantitative comparison of our results with

data we study the transverse momentum dependence
characterized by a fitting function PðxF; pT ;mμμÞmeasured
in the E-615 pion-induced Drell-Yan experiment on a
tungsten target [55,57,58]. This function is defined by

d3σ
dxπdxNdpT

¼ d2σ
dxπdxN

PðxF; pT ;mμμÞ; ð4Þ

where xπ , xN are the Bjorken scaling variables of the pion
and nucleon, xF ¼ xπ − xN , pT is the transverse momentum
of the produced dilepton pair, and m2

μμ ¼ sxπxN is the inva-
riant mass-squared of the dilepton pair where s ¼ ðpπ þ
pNÞ2 is the center-of-mass energy squared. For the fitting
function P we have the relation PðxF; pT ;mμμÞ=jpT j ∝
F1
UUðxπ; xN; pTÞ, where within the TMD factorization

scheme, at leading twist, and including only the W term
in the cross section, the unpolarized Drell-Yan structure
function is given by [4,58,59]

F1
UUðxπ; xN;pTÞ ¼

1

Nc

X

q

e2q

Z
d2kTd2lT

× δðpT − kT − lTÞfq̄πðxπ;k2TÞfqAðxN;l2
TÞ;
ð5Þ

where the sum is over quark flavors q ¼ u, d, and we
approximate the unpolarized TMD of the tungsten target
by a sum over nucleon TMDs: fqAðx;l2

TÞ¼Z=Afqpðx;l2
TÞþ

N=Afqnðx;l2
TÞ. To evaluate F1

UUðxπ; xN; pTÞ and thereby
make a qualitative comparison with data for PðxF;
pT ;mμμÞ obtained in the E-615 experiment [55] we combine
our DSE results for fqπðxπ; k2TÞ with two sets of empirical
extractions of fqpðx;l2

TÞ and fqnðx;l2
TÞ from Refs. [51,60],

respectively.
Results for the fitting function PðxF; pT ;mμμÞ=jpT j are

presented in Fig. 3. The solid lines are empirical results
from Ref. [55] for xF ¼ 0, 0.25, 0.5 where empirically
mμμ ≃ 6 and

ffiffiffi
s

p ¼ 22 GeV. The shaded regions in Fig. 3
are our calculated results for NF1

UUðxπ; xN; pTÞ for
0 ≤ g2 ≤ 0.13 GeV, where for each g2 (The quantity g2
is the rapidity anomalous dimension, an inherently non-
perturbative parameter that is separate from the TMDs but
enters the TMD evolution equations. For the TMD evolu-
tion we follow closely Ref. [51].) the normalization N is
chosen so that this result equals PðxF; pT ;mμμÞ=jpT j at
jpT j ¼ 0.125 GeV, which represents the lowest jpT j value
in the E-615 data set [61]. Since Eq. (5) only describes the
W term we restrict jpT j ≤ 0.2mμμ following the finding of
Ref. [60]. To study the “prescription dependence” of the
TMD evolution, we also present evolved TMD results
using the ζ prescription [60] as the dashed lines in Fig. 3,
where we have taken g2 ¼ 0. As made clear from Fig. 3 the
two evolution prescriptions give similar results, and our
results for the fitting function P at xF ¼ 0, 0.25 are in good
agreement with E-615 data. For xF ¼ 0.5 we find a

FIG. 3. The solid lines are empirical results from the E-615
experiment [55] for PðxF; pT ;mμμÞ=jpT j (no uncertainties are
provided) and the curves in ascending order correspond to
xF ¼ 0, 0.25, 0.5. The neighboring shaded bands correspond
to the same xF values, and are our results evolved using the b�
prescription as outlined in Ref. [51], with the nonperturbative
parameter g2 in the range 0 ≤ g2 ≤ 0.13 (the lower boundary
corresponds to g2 ¼ 0). The dashed lines are obtained using the ζ
prescription from Ref. [60] with g2 ¼ 0. In this prescription g2 is
much more constrained, with the small uncertainty easily con-
tained within the existing shaded region.

PHYSICAL REVIEW LETTERS 122, 082301 (2019)

082301-4



discrepancy with data of around 30%; however for each xF
our results favor a small value for g2 as suggested in
Ref. [60]. Agreement with data could be improved by
increasing the initial scale of the DSE calculations, which is
an indication that higher Fock states may play an impor-
tant role.
Using the DCSB-improved truncation to QCD’s DSEs

we have determined the pion’s minimal Fock-state LFWFs
from the solution to the BSE, and from these LFWFs the
pion’s leading-twist time-reversal even TMD. The pion—as
the Goldstone boson associated with DCSB in QCD—
provides the ideal environment to study the impact of
DCSB on hadron structure. We find that DCSB effects
produce broad unimodal LFWFs and TMD, when viewed
as a function of x, for small k2T . In this regime the k2T
dependence of the pion’s LFWFs and TMD, for a given x,
is described well by a Gaussian; however the x and k2T does
not factorize. These DCSB driven effects diminish slowly
as k2T becomes large, where for k2T ≳ 10 GeV2 the LFWFs
scale as ψ0 ∝ xð1 − xÞ=k2T and ψ1 ∝ xð1 − xÞ=k4T in agree-
ment with the power-law behavior predicted by perturba-
tive QCD. These results illustrate how a momentum
tomography for the pion can shed light on hadron structure
effects driven by DCSB and also help expose the transition
from the nonperturbative to perturbative regimes in QCD.
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