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In the nonadiabatic dynamics across a quantum phase transition, the Kibble-Zurek mechanism predicts
that the formation of topological defects is suppressed as a universal power law with the quench time. In
inhomogeneous systems, the critical point is reached locally and causality reduces the effective system size
for defect formation to regions where the velocity of the critical front is slower than the sound velocity,
favoring adiabatic dynamics. The reduced density of excitations exhibits a much steeper dependence on the
quench rate and is also described by a universal power law that we demonstrated in a quantum Ising chain.
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The development of new methods to induce or mimic
adiabatic dynamics is essential to the progress of quantum
technologies. In many-body systems, the need to develop
new methods to approach adiabatic dynamics is underlined
for their potential application to quantum simulation and
adiabatic quantum computation [1,2].
The Kibble-Zurek mechanism (KZM) is a paradigmatic

theory to describe the dynamics across both classical
continuous phase transitions and quantum phase transitions
[3–7]. The system of interest is assumed to be driven
by a quench of an external control parameter hðtÞ ¼
hcð1 − t=τQÞ in a finite time τQ across the critical value
hc. The mechanism exploits the divergence of the relax-
ation time τðεÞ ¼ τ0=jεjzν (critical slowing down) as a
function of the dimensionless distance to the critical point
ε ¼ ðhc − hÞ=hc ¼ t=τQ, to estimate the timescale, known
as the freeze-out time t̂, in which the dynamics ceases to
be adiabatic. The dynamics is therefore controlled by the
quench time τQ and by z and ν, which are referred to as
the dynamic and correlation-length critical exponent,
respectively. The central prediction of the KZM is the
estimate of the size of the domains in the broken sym-
metry phase using the equilibrium value of the correlation
length ξðεÞ ¼ ξ0=jεjν, at the value εðt̂Þ ¼ ε̂. As a result,
the average domain size exhibits a universal power-law
scaling dictated by ξðt̂Þ ¼ ξ0ðτQ=τ0Þν=ð1þzνÞ. At the boun-
dary between domains, topological defects form. In one
dimension, the density of defects is set by d ¼ ξðt̂Þ−1 ∼
τ−βKZMQ with βKZM ¼ ν=ð1þ zνÞ. The KZM constitutes a
negative result for the purpose of suppressing defect
formation, given that in an arbitrarily large system, defects
will be formed no matter how slowly the phase transition is

crossed. This has motivated a variety of approaches to
circumvent the KZM scaling law and favor adiabatic
dynamics, including nonlinear protocols [8,9], optimal
control [10–12], shortcuts to adiabaticity [13–15], and
the simultaneous tuning of multiple parameters of the
system [16], to name some relevant examples [17].
Test beds for the experimental demonstration of univer-

sal dynamics at criticality are often inhomogeneous, and it
is this feature which paves the way to defect suppression.
Under a finite-rate quench of an external control parameter,
the system does not reach the critical point everywhere
at once. Rather, a choice of the broken symmetry made
locally at the critical front can influence the subsequent
symmetry breaking across the system, diminishing the
overall number of defects. In this scenario, the paradig-
matic KZM fails, and should be extended to account for
the inhomogeneous character of the system [18–23]. An
inhomogeneous Kibble-Zurek mechanism (IKZM) has
been formulated in classical phase transitions [19,22,23]
following the early insight by Kibble and Volovik [24].
The current understanding is summarized in Refs. [25,26].
Its key predictions are a suppression of the net number of
excitations with respect to the homogeneous scenario, and
an enhanced power-law scaling of the residual density of
excitations as a function of the quench rate.
In classical systems, numerical evidences in favor of

the IKZM have been reported [22]. Three experimental
groups have observed an enhanced dependence of the
density of kinks with the quench rate across a structural
continuous phase transition in trapped Coulomb crystals
[27–29]. However, a related experiment testing soliton
formation during Bose-Einstein condensation of a trapped
atomic cloud under forced evaporative cooling was
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consistent with the standard KZM in a homogeneous
setting [30]. In addition, a verification of the power law
in both numerical studies and experiments has been limited
by the range of testable quench rates and defect losses.
Defect suppression induced by causality has also been
shown to play a role in inhomogeneous quantum systems,
that have so far been explored by numerics and adiabatic
perturbation theory [20,21,31–34].
In this work, we establish the universal character of the

critical dynamics across an inhomogeneous quantum phase
transition and the validity of the IKZM in the quantum
domain. We show that the dependence of the density of
excitations with the quench rate is universal and exhibits a
crossover between the standard KZM at fast quench rates,
and a steeper power-law dependence for slower ramps that
favors defect suppression.
Dynamics of an inhomogeneous quantum phase

transition.—The one-dimensional inhomogeneous quan-
tum Ising model in a transverse magnetic field h describes
a chain of L spins with the Hamiltonian

H0 ¼ −
XL−1
n¼1

JðnÞσznσznþ1 −
XL
n¼1

hðtÞσxn: ð1Þ

The setup (1) is schematically represented in Fig. 1.
Its homogeneous version [JðnÞ ¼ J] is a paradigmatic

model to study quantum phase transitions [35], and its
quantum simulation in the laboratory is at reach in a
variety of quantum platforms including superconducting
circuits [36], Rydberg atoms [37], and trapped ions [38].
The homogeneous transverse-field Ising model (H-TFIM)
exhibits a quantum phase transition at hc ¼ �J between
a paramagnetic phase (jhj>J) and a ferromagnetic phase
(jhj<J). Therefore, it is convenient to introduce the reduced
parameter ε ¼ ðJ − hÞ=J. The gap between the ground and
excite state closes as Δ ¼ 2jh − Jj, so the relaxation time
τ ¼ ℏ=Δ ¼ τ0=jεj diverges as the system approaches the

critical point (critical slowing down). The equilibrium
healing length reads ξ ¼ 2J=Δ ¼ 1=jεj in units of the
lattice spacing.
The critical dynamics of a H-TFIM is well described

by the standard KZM [6,7]. The nonadiabatic dynamics
results in the creation of topological defects. In the classical
case, the latter are formed at the boundary between adjacent
domains in the broken symmetry phase and are known as
(Z2) kinks. In the quantum domain, excitations involve
coherent quantum superpositions and are generally delo-
calized [39]. This is particularly the case in translationally
invariant systems [40]. The quantum KZM sets the average
distance between kinks by the equilibrium value of the
correlation length at the instant when the dynamics ceases
to be adiabatic [40–43]. This timescale known as the
freeze-out time can be estimated by equating the relaxation
time to the time elapsed after the critical point, τðt̂Þ ¼ jε=_εj,
whence it follows that t̂ ¼ ffiffiffiffiffiffiffiffiffi

τ0τQ
p . The density of topo-

logical defects d ∼ ξðt̂Þ−1 scales then as

dKZM ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JτQ=ℏ

p : ð2Þ

An exact calculation shows that d ¼ ð1=2πÞdKZM [40].
We wish to investigate how this paradigmatic scenario is
modified in inhomogeneous quantum phase transitions,
extending in doing so the IKZM to the quantum domain.
We consider a smooth spatial modulation of the tunneling
amplitude JðnÞwith maximum at n ¼ 0 and refer to Eq. (1)
by I-TFIM in this case. Using a Taylor series expansion,
JðnÞ can be locally approximated by a quadratic function of
the form

JðnÞ ¼ Jð0Þð1 − αn2Þ þOðn3Þ: ð3Þ

The choice of α is such that the interaction coupling at the
edges of the chain recovers the value in the homogene-
ous Ising model JðnÞ ¼ J ∼ 1, that we use as a reference.
This parabolic spatial modulation often arises in trapped
systems using the local density approximation [25] and it is
accessible in quantum simulators [36–38]. Further, we let
the quench of the magnetic field to be homogeneous and
with constant rate 1=τQ,

hðtÞ ¼ Jð0Þ
�
1 −

t
τQ

�
; ð4Þ

during the time interval t ∈ ½−τQ; τQ�. Alternatively one
could consider the driving of a homogeneous system
with a spatially dependent magnetic field. We introduce
the dimensionless control parameter εðn; tÞ ¼ ½hðtÞ −
JðnÞ�=JðnÞ that provides a notion of local distance to
the critical point. It takes values εðx; tÞ > 0 in the high
symmetry (paramagnetic) phase, reaches εðx; tÞ ¼ 0 at
the critical point, and the broken-symmetry phase for

FIG. 1. Inhomogeneous quantum phase transition. Schematic
illustration of a one-dimensional transverse-field quantum Ising
chain with a symmetric spatial modulation of the tunneling
amplitude JðnÞ (vertical arrow). As the homogeneous magnetic
field hðtÞ (red line) is decreased, the critical point is first crossed
locally at the center of the chain. Subsequently, the critical front
spreads sideways at a speed vFðnÞ that can be controlled by the
quench rate.
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εðx; tÞ < 0 (ferromagnetic phase). In what follows, we
consider the case in which the system is initially prepared
deep in the ground state of the paramagnetic phase such
that εðn; tÞ > 0 everywhere in the chain.
As a result of the spatial modulation of JðnÞ, we intro-

duce an effective quench rate with a spatial dependence,
τQðnÞ ¼ τQ½JðnÞ=Jð0Þ� ¼ τQð1 − αn2Þ. From the condi-
tion εðxF; tFÞ ¼ 0, the time at which criticality is reached
at the site nF ¼ n is tF ¼ τQαn2 and thus εðn; tÞ ¼
½t − tFðnÞ�=τQðnÞ. This expression determines the trajec-
tory of the critical front and yields the following estimate
for the local front velocity

vFðnÞ ¼
1

2αjnjτQð0Þ
; ð5Þ

which diverges as the lattice index approaches the extrema
of JðnÞ, i.e., at the center of the chain. The critical dynamics
is expected to be nonadiabatic whenever vFðnÞ surpasses
the speed of sound s ¼ 2JðnÞ=ℏ. Assuming that JðnÞ ≈
Jð0Þ in the region where vFðnÞ > s, the effective size of
the system where excitations are expected to be created is
set by

jn̂j < ℏ
4αJð0ÞτQ

; ð6Þ

and is thus proportional to the quench rate. The effective
size of the system for kink formation is simply 2jn̂j and
one can thus expect a suppression of the total number of
defects by a factor 2jn̂j=L with respect to the homogeneous
scenario ½JðnÞ ¼ Jð0Þ�. The net density of defects is
estimated to be given by

d ∼
2jn̂j
Lξðt̂Þ : ð7Þ

Assuming αjn̂j2 ≪ 1, one can use the estimate of the
homogeneous KZM for the average distance between kinks
ξðt̂Þ. As a result, the estimate of the IKZM for the net
number of defects in the I-TFIM reads

dIKZM ¼ 1

αL

�
ℏ

2Jð0ÞτQ

�3
2

: ð8Þ

We note the threefold enhancement of the power-law
exponent, an easily testable prediction that we demonstrate
numerically in what follows. The condition αn̂2 ≪ 1 is not
sufficient to test the IKZM scaling law Eq. (8). When
2n̂=ξ̂ ∼ 1 the applicability of the KZM can be called into
question. Numerical simulations [22] and several experi-
ments [27–29] have reported a steepening of the scaling at
the onset of adiabatic dynamics in the course of classical
phase transitions. To avoid running into this regime, we
demand 2n̂=ξ̂ > 1.

Further, 2n̂ should be large enough so that the power law
scaling can be observed, without saturation at fast quench
rates. Hence, we are led to consider slow quenches in
large system sizes with small α, and ℏα=½4Jð0Þ� ≪ τQ <
ℏ=½2Jð0Þα2=3�.
This treatment of the inhomogeneous quantum phase

transition admits a straightforward extension to general
modulations of the form JðnÞ ¼ Jð0Þð1 − αqjnjqÞ as shown
in the Supplemental Material [44]. The power-law depend-
ence of the density of topological defects is then

dIKZM ¼ 2

L

�
1

αqq

�
1=ðq−1Þ� ℏ

2Jð0ÞτQ

�ðqþ1Þ=ð2q−2Þ
; ð9Þ

which generalizes Eq. (8) to values of q different from
q ¼ 2.
In order to provide quantitative evidence of the IKZM,

we perform numerical simulations based on tensor-network
algorithms [45]. Specifically, at t ¼ −τQ we calculate the
ground state for Eq. (1) by means of the density matrix
renormalization group (DMRG) algorithm [46], using a
matrix product state description [47]. This is taken as
the initial state at the beginning of the quench. Sub-
sequently, we simulate the time evolution described by
the time-dependent Schrödinger equation generated by the
Hamiltonian (1) using the time evolving block decimation
(TEBD) algorithm [48]; see Supplemental Material [44].
We calculate the expectation value of the operator asso-
ciated with the density of kinks,

dðtÞ≡ 1

2L

XL−1
n¼1

hψðtÞjð1 − σznσ
z
nþ1ÞjψðtÞi; ð10Þ

where jψðtÞi is the time-dependent state. Using the direct
evaluation of Eq. (10), Fig. 2 shows the dynamics of the
density of kinks as a function of the time of evolution t=τQ
during the crossing of the phase transition for different
quench times τQ. In particular, we consider a linear chain of
L ¼ 50 spins with open boundary conditions, described by
matrix product states with bond dimension up to χ ¼ 1500.
The dashed line signals the time at which the phase
transition is reached in the center of the chain.
Universal scaling of the density of kinks.—The correla-

tion-length and dynamic critical exponents of the Ising
model are known to be ν ¼ 1 and z ¼ 1, respectively. For
arbitrary values ν and z, one can extend the IKZM to the
quantum case estimating the sound velocity by the ratio of
the local frozen-out correlation length ξ̂ðnÞ and relaxation
time scale τ̂ðnÞ ¼ τ½ε̂� ¼ t̂ðnÞ, this is, by

ŝ ¼ ξ̂

τ̂
¼ ξ0

τ0

�
τ0

τQðnÞ
�
νðz−1Þ=ð1þνzÞ

: ð11Þ
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Using τQðnÞ ≈ τQð0Þ in the resulting expression for the
effective size of the system one finds in one dimension
dIKZM ∼ τ−βIKZMQ , where βIKZM¼ð1þ2zÞ=ð1þzνÞ, which
reduces for the TFIM (z ¼ ν ¼ 1) to βIKZM ¼ 3=2. For a
general value of q, the exponent reads βIKZM ¼ ð1þ qνÞ=
½ð1þ zνÞðq − 1Þ�. Further, one can generally write

dIKZM ∼ X̂dKZM; ð12Þ

this is, the IKZM scaling follows from the paradigmatic
KZM result for homogeneous systems, taking into account
the effective fraction of the system X̂ ¼ 2n̂=L that depends
on the quench rate as X̂ ∼ 1=τQ. In Fig. 3(a), we depict
the power-law dependence for the density of excitations
upon completion of the phase transition (t ¼ τQ) as a
function of τQ for both the H-TIFM and I-TFIM cases. The
homogeneous case [40] is governed by the universal KZM
scaling d ∼ τ−0.51�0.03

Q , with regression coefficient 0.9994,
and is plotted as a reference. The numerical data are well
described by the KZM prediction d ∼ 1= ffiffiffiffiffi

τQ
p . The density

of defects also exhibits a saturation at fast quenches as well
as deviations at the onset of adiabatic dynamics in the limit
of slow driving. These features in the extreme case of very
fast and slow quenches are also shared by the inhomo-
geneous crossing of the phase transition. In addition,
numerical simulations in Fig. 3(a) establish that for
intermediate quench rates the density of defects exhibits
a crossover between two different universal regimes,
dictated by the KZM (fast rate quench) and IKZM (slow
rate quench) scalings derived in Eqs. (2) and (8),

respectively. We report in the I-TFIM a critical exponent
for KZM of d ∼ τ−0.52�0.03

Q with regression coefficient
0.9991. Therefore, at fast quench rates the inhomogeneous
critical dynamics is described by the KZM prediction
d ∼ 1= ffiffiffiffiffi

τQ
p . Further, the scaling for slower quench rates

is described by d ∼ τ−1.51�0.03
Q with regression coefficient

0.9992, in agreement with the theoretical prediction
d ∼ τ−3=2Q . This IKZM scaling holds for quench rates
between the onset of adiabatic dynamics and the character-
istic quench rate τ�Q at which the crossover occurs. The
latter can be estimated by setting the effective system size
equal to the physical system size, i.e., 2n̂ ¼ L. This yields
τ�Q ¼ ℏ=½2αJð0ÞL� and we have verified numerically the
inverse linear dependence of the value of τ�Q observed
numerically with the system size L and α. Figure 3(b)
shows the agreement between the theoretical and analytical

(a)

(b)

FIG. 3. Density of topological defects d as a function of the
quench time τQ. (a) In a homogeneous transition (H-TFIM,
denoted by △) the dependence of d on τQ is described by the
original KZM, up to a saturation of d at fast quench rates and the
onset of adiabatic dynamics for slow quenches. When the critical
point is crossed locally (I-TFIM, denoted by □), the dependence
is no longer described by a single-power law and exhibits a
crossover between two universal regimes, described by Eqs. (2)
and (8). The symbols correspond to the numerical results for
L ¼ 50, and the solid lines are the linear fits (q ¼ 2). (b) Com-
parison between the theoretical and numerical power-law ex-
ponents for different values of q in both homogenous and
inhomogeneous scaling regimes. Results corresponding to the
homogenous scaling (q → ∞) are shown in green.

FIG. 2. Generation of topological defects under inhomo-
geneous driving. Density of kinks d as a function of the quench
rate τQ and the scaled time of evolution t=τQ. The dashed black
line represents the time tcð0Þ at which criticality is reached at the
center of the linear chain (L ¼ 50). The initial magnetic field is
hð−τQÞ ¼ 10J so that the initial state is deep in the paramagnetic
phase, with Jð0Þ ¼ 5J and Jð�L=2Þ ¼ J (q ¼ 2).
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power-law exponents in the inhomogeneous scaling regime
when different values of q are considered (other than q ¼ 2),
governing the modulation of JðnÞ¼Jð0Þð1−αqjnjqÞ. See
Supplemental Material [44] for the corresponding numerical
results on the explicit dependence of the density of defects as
a function of τQ analogous to Fig. 3(a). The agreement
indicates the validity of the generalized power-law prediction
in Eq. (9). As the value of q increases the nature of the
transition becomes increasingly homogenous. For large
values of q the exponent approaches the homogenous value
βKZM ¼ 1=2.
Conclusions.—In summary, we have explored the effect

of local driving in the universal dynamics across a quantum
phase transition using the paradigmatic quantum Ising
chain as a test bed. A local crossing of the critical point
can result from inhomogeneities in the system or the
spatial modulation in the external fields that drive the
transition. As the critical point is reached locally, there is an
interplay between the speed of sound and the velocity of
propagation of the critical front. The effective system size
in which topological defects can form acquires then a
dependence on the quench rate. For fast quenches, the
residual density of defects is well described by a power law
in agreement with the original Kibble-Zurek mechanism.
As the quench rate decreases there exists a crossover to a
novel power-law scaling behavior of the density of defects,
which is characterized by a larger exponent, higher than
that predicted by the Kibble-Zurek mechanism. Local
driving thus leads to a much more pronounced suppres-
sion of the density of defects that constitute a testable
prediction amenable to a variety of platforms for quantum
simulation including cold atoms in optical lattices, trapped
ions, and superconducting qubits. Our results should
prove useful in a variety of contexts including the
preparation of phases of matter in quantum simulators
and the engineering of inhomogeneous schedules in
quantum annealing.
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