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Prethermalization refers to the remarkable relaxation behavior which an integrable many-body system in
the presence of a weak integrability-breaking perturbation may exhibit: After initial transients have died
out, it stays for a long time close to some nonthermal steady state, but on even much larger time scales, it
ultimately switches over to the proper thermal equilibrium behavior. By extending Deutsch’s conceptual
framework from Phys. Rev. A 43, 2046 (1991), we analytically predict that prethermalization is a typical
feature for a very general class of such weakly perturbed systems.
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Isolated many-body quantum systems are known to
equilibrate; i.e., expectation values exhibit an initial relax-
ation and then spend most of their time close to a constant
value, provided some rather weak preconditions are ful-
filled. Furthermore, thermalization is expected for so-called
nonintegrable systems; i.e., the long-time behavior is well
approximated by a microcanonical ensemble. (Possible
exceptions, e.g., due to many-body localization, are tacitly
ignored here.) In contrast, integrable systems usually
exhibit quite significant deviations from such a thermal
long-time behavior. All these issues have been extensively
explored in the literature, as reviewed, among others, in
Refs. [1–4]. They are not the subject of our present Letter
but, rather, will be taken for granted.
Our main issue is the question of how the temporal

relaxation of an integrable system changes in response to a
weak integrability-breaking perturbation. More specifi-
cally, we will derive a rigorous bound for the difference
between unperturbed and perturbed expectation values,
implying that those changes remain, over a long period
of time, negligibly small for a very large class of weak
perturbations. Our approach is conceptually akin to
Deutsch’s seminal work on thermalization, treating the
perturbations along the lines of random matrix theory [5].
In particular, we will exploit Deutsch’s result concerning
the ultimate thermalization of the perturbed systems. With
respect to the unperturbed (integrable) system, moreover,
we will take for granted that its initial relaxation is not
extremely slow, and that it exhibits clearly observable
deviations from a thermal long-time behavior. Thus,
altogether, we are left with a very large class of perturba-
tions with the following quite remarkable property, hence-
forth named prethermalization: Initially, the perturbed
system closely follows the unperturbed relaxation towards
a nonthermal steady state, but on even much larger time
scales, there must be a clearly visible transition to the
ultimate thermal behavior.

Originally, the term prethermalization was introduced by
Berges, Borsányi, and Wetterich [6] for matter under
extreme conditions in a quasisteady state far from equilib-
rium, which, nevertheless, exhibits some genuine thermal
properties, however, without any reference to the concept of
integrability. Our present somewhat different notion of
prethermalization has been independently established by
Moeckel and Kehrein in Ref. [7]. During recent years, these,
and further slightly differing guises of prethermalization,
have been explored in numerous theoretical [8–11], as well
as experimental [12], investigations, see also the recent
reviews [4,13] and further references therein.
Incidentally, the particular examples in Moeckel and

Kehrein’s original work [7] and, also, in some subsequent
studies [9] are beyond the above mentioned realm of our
present approach: If the unperturbed system is initially at
thermal equilibrium or in the energy ground state, as is the
case in [7,9], then the unperturbed dynamics is trivial, and
also, the signatures of prethermalization after adding a
weak perturbation remain too small for our purposes.
Against our treating the perturbations as random matri-

ces (in the unperturbed energy basis), one might object that
the “true” perturbation in any concrete physical model is
not a random matrix. In particular, the true matrix is often
banded [5,14–16]; i.e., the typical magnitude of its entries
decreases with increasing distance from the matrix diago-
nal. Furthermore, for noninteracting systems perturbed by
few-body interactions, the matrix will be very sparse; i.e.,
only a small fraction of its entries is nonzero [3,16–18].
To overcome these concerns, we will consider ensembles

of random matrices which can be tailored to emulate the
basic features of many concrete models, such as sparsity,
bandedness, and other statistical characteristics [3,5,14–
18]. Thus, the true perturbation is expected to be contained
as one specific matrix in such a properly tailored ensemble
as well. (For simplicity, one may imagine matrices of large
but finite dimension, whose entries can assume only a finite
number of different possible values, as is the case in any
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numerical investigation. If each possible value has nonzero
probability, there is a finite chance of sampling the true
matrix from the ensemble.) Hence, if one could prove that
some property applies to all members of the ensemble, the
property would also apply to the true model. Our main
result consists in a slightly weaker statement, namely, that
the property “prethermalization” at least applies with
overwhelming probability when randomly sampling per-
turbations from the ensemble (“typicality of prethermali-
zation”). Therefore, it is still very reasonable to expect that
the true model is not one of the extremely unlikely
exceptions. An illustrative example (spin chain model) is
provided in the Supplemental Material [19]. Analogous
arguments are routinely adopted in random matrix theory,
which is well known to be extremely successful in practice
[3,18], though its applicability has, to our knowledge, not
been rigorously justified in any concrete physical example.
Similar considerations also apply to many other “nonsys-
tematic” but practically very well established approxima-
tions, such as density functional theory or Boltzmann
equations beyond the validity limits of their derivation.
We will demonstrate typicality of prethermalization for a

great variety of different ensembles. The resulting total set
of all admitted perturbations is, therefore, extremely large.
This seems to us a quite noteworthy finding in itself,
independent of the question whether some particular model
is covered or not. Moreover, to actually exclude some
particular model, it would have to be untypical with respect
to every one of those various ensembles. Finally, we remark
that most applications of randommatrix theory focus on the
ensemble-averaged behavior and take for granted that most
individual matrices behave very similarly to the average
[3,18]. In our present approach, no such extra assumption
will be needed.
The unperturbed system is described by a Hamiltonian

H0 with eigenvalues E0
n and eigenvectors jni0. The unper-

turbed evolution of an arbitrary initial state ρð0Þ can, thus,
be written as ρ0ðtÞ ¼ e−iH0t=ℏρð0ÞeiH0t=ℏ and the expect-
ation value of any given observable A as

A0ðtÞ ≔ Trfρ0ðtÞAg ¼
X
mn

ρ0mnð0ÞA0
nmei

E0n−E
0
m

ℏ t; ð1Þ

ρ0mnðtÞ ≔ 0hmjρ0ðtÞjni0; A0
nm ≔ 0hnjAjmi0; ð2Þ

where, depending on the specific system under consider-
ation, the indices m and n run from 1 to infinity or to some
finite upper limit.
Likewise, the perturbed system

H ¼ H0 þ V ð3Þ

exhibits eigenvalues En and eigenvectors jni. Focusing on
the same initial state ρð0Þ as before, the expectation value
AðtÞ under the perturbed dynamics is then given by the
same formulas as in (1) and (2), except that all indices “0”

must be omitted. In terms of the unitary basis trans-
formation matrix

Umn ≔ hmjni0; ð4Þ
this expectation value can be further rewritten as

AðtÞ ¼
X
mn

X
μνστ

UmμU�
nνUnσU�

mτρ
0
μνð0ÞA0

στei
En−Em

ℏ t: ð5Þ

The quantity of foremost interest is the difference

ΔðtÞ ≔ AðtÞ −A0ðtÞ ð6Þ
between the perturbed and the unperturbed expectation
values. Taking into account ρ0mnð0ÞeiðE0

n−E0
mÞt=ℏ ¼ ρ0mnðtÞ

[see above (1)], it follows, with (1) and (5), that

ΔðtÞ ¼
X
μνστ

ρ0μνðtÞA0
στ½γτμðtÞγ�σνðtÞ − δτμδσν�; ð7Þ

γτμðtÞ ≔
X
m

U�
mτUmμeiðE

0
μ−EmÞt=ℏ; ð8Þ

where δmn is the Kronecker delta.
Finally, instead of one particular perturbation V in (3),

we consider a statistical ensemble of different V’s, and we
indicate averages over the ensemble by an overline. This
randomization of V is inherited by the HamiltonianH in (3)
and, thus, by the eigenvalues En, the eigenvectors jni, the
Umn in (4), and the γτμðtÞ in (8). On the other hand, H0,
ρð0Þ, and A are considered as arbitrary but fixed (non-
random); hence, the same must apply to E0

n, jni0, ρ0ðtÞ, and
to the matrix elements in (2).
The first main result of our Letter consists in the general

rigorous bound

jΔðtÞj ≤ ΔA

2
fðtÞ; ð9Þ

fðtÞ ≔ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − YðtÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − YðtÞ þWðtÞ

p
; ð10Þ

YðtÞ ≔
X
μνσ

ρ0μνðtÞγσμðtÞ½γσνðtÞ��; ð11Þ

WðtÞ ≔ 4YðtÞ − ½ZðtÞ þ Z�ðtÞ�2; ð12Þ

ZðtÞ ≔
X
μν

ρ0μνðtÞγνμðtÞ; ð13Þ

where ΔA is the measurement range of A (largest minus
smallest eigenvalue). The quite tedious derivation has been
relegated to the Supplemental Material [19].
Applying Markov’s inequality to (9), it follows for any

ϵ > 0 that

ProbðjΔðtÞj ≤ ϵΔAÞ ≥ 1 − fðtÞ=2ϵ; ð14Þ
where the left hand side denotes the probability that
jΔðtÞj ≤ ϵΔA when randomly sampling perturbations V.
For sufficiently small fðtÞ, the difference ΔðtÞ in (6) will,
thus, be negligible for the vast majority of all V’s.
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Our first assumption regarding the so far arbitrary
ensemble of V ’s is as follows: Multiplying the unperturbed
energy eigenvectors jni0 by arbitrary factors σn ∈ f�1g
leaves the V ensemble invariant. Hence, the statistical
properties of γμν in (18) also remain unchanged if all the
matrix elements Umn in (4) are multiplied by arbitrary
factors σn ∈ f�1g. As a consequence (see also [19]), the
ensemble average of (8) must vanish unless τ ¼ μ,

γτμðtÞ ¼ δτμgμðtÞ; ð15Þ
gμðtÞ ≔

X
m

jUmμj2eiðE0
μ−EmÞt=ℏ: ð16Þ

To justify this assumption, we note that randomly flipping
the signs of the jni0 leaves all physical properties
unchanged but randomizes the signs of the true perturba-
tion matrix elements V0

mn. Hence, it is appropriate to adopt
a random matrix model with the above invariance property.
As stated in the introduction, the unperturbed system is

assumed to exhibit equilibration but not thermalization.
Implicitly, this requires a macroscopically well defined
system energy; i.e., there must exist a microcanonical (MC)
energy interval IMC ≔ ½E − δE; E� so that only energies
E0
n ∈ IMC exhibit nonnegligible level populations ρ0nnð0Þ.

The number of energies E0
n contained in IMC is denoted by

N and, without loss of generality, we assume that n ∈
f1;…; Ng for all those E0

n’s. Furthermore, whenever
E0
n ∉ IMC, we adopt the idealization that ρ0nnð0Þ is strictly

zero [21]. The Cauchy-Schwarz inequality jρ0mnð0Þj2 ≤
ρ0mmð0Þρ0nnð0Þ then implies that, in (1), only summands
with m, n ∈ f1;…; Ng actually contribute. As usual, we
take for granted that N is huge (exponentially large in the
system’s degrees of freedom [22]), while the local level
density remains close to D ≔ δE=N throughout the inter-
val IMC.
Given that only indices m; n ∈ f1;…; Ng actually mat-

ter in (1), we can and will assume that their range is
extended to arbitrary integer values and that the energies E0

n

and the matrix elements V0
mn ≔ 0hmjVjni0 are (re-)defined

for arbitrary integersm, n ∉ f1;…; Ng by way of “extrapo-
lating” in a physically natural way their properties for
m, n ∈ f1;…; Ng.
As a first example, we consider the particularly simple

case that E0
nþ1 − E0

n ¼ D for all n, and that the statistical
properties of the matrix elements V0

mn do not depend
separately on m and n, but only on the difference
m − n. As a consequence (see also [19]), the statistical
properties of (16) remain invariant when simultaneously
adding an arbitrary integer ν to all indices on the right hand
side (but not on the left hand side). Thus, upon averaging,
one can infer that gμðtÞ ¼ gμþνðtÞ, hence,

gðtÞ ≔ gμðtÞ ð17Þ

is a well-defined (μ-independent) function.

Under the additional assumption that all statistical
properties of the diagonal matrix elements V0

nn are identical
to those of −V0

nn, one can finally show [19] that

gðtÞ ¼ ½gðtÞ��: ð18Þ

To justify this assumption, we note that the diagonal
elements of the true V in (3) can always be readjusted
to vanish on the average. A symmetrization procedure for
the remaining distribution will be provided later.
Introducing (15)–(18) into (11)–(13), and taking into

account that
P

νρ
0
νν ¼ 1 yields YðtÞ ¼ ½gðtÞ�2, ZðtÞ ¼ gðtÞ,

and WðtÞ ¼ 0; hence, (10) takes the form

fðtÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½gðtÞ�2

q
: ð19Þ

One readily infers from (4), (16), and (17) that gð0Þ ¼ 1
and that jgðtÞj ≤ 1 for all t. Furthermore, it is convenient to
rewrite (16) as

gμðtÞ ¼
Z

dE hμðEÞe−iEt=ℏ; ð20Þ

hμðEÞ ≔
X
m

jUmμj2δðE − Em þ E0
μÞ: ð21Þ

The quantity FμðEÞ ≔ hμðE − E0
μÞ plays a key role in

random matrix theory under the name strength function
or local spectral density of states [3,16]. Specifically, one
finds that the ensemble average hμðEÞ is very well
approximated by the Breit-Wigner (BW) distribution

hBWðEÞ ≔
1

2π

Γ
E2 þ Γ2=4

; ð22Þ

under conditions which, together with the concomitant
definition of Γ, will be discussed in more detail shortly.
Introducing this result into (20) yields gμðtÞ ¼ e−Γjtj=2ℏ, and
with (17), (19) we obtain

fðtÞ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−Γjtj=ℏ

p
≤ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γjtj=ℏ

p
: ð23Þ

Equations (14) and (23) represent our main results. In the
remainder of the Letter, we focus—as usual in random
matrix theory [3,16,18]—on the case that all V0

mn with
m ≥ n are statistically independent of each other (those
with m < n follow from V0

nm ¼ ½V0
mn��), that the statistics

only depends on m − n [see above (17)], and that V0
mn and

−V0
mn are equally likely [see above Eqs. (15), (18)

and [19] ].
If all V0

mn are, furthermore, real and Gaussian distributed
with variance σ2v, the result (22) with

Γ ≔ 2πσ2v=D ð24Þ
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was obtained by Deutsch [5]. Substantial generalizations
have been worked out by Fyodorov et al. in Refs. [16],
including distributions with a pronounced delta peak at
zero, corresponding to sparse random matrices V0

mn. In
addition, they also admitted the possibility of banded
matrices [23]. We have further extended their analytical
supersymmetry approach and, moreover, performed exten-
sive numerical explorations, showing that the key results
(22)–(24) also remain valid for complex V0

mn’s and under
still considerably weaker assumptions regarding their
statistics. A few illustrative examples are provided in the
Supplemental Material [19].
Multiplying V in (3) by an extra factor λ (coupling

strength) entails a factor λ2 in (24); hence, the characteristic
time scale in (23) decreases as λ−2, in agreement with
previous findings for the persistence of the prethermalized
state [4,11]. However, strictly speaking, we note that our
inequality (9) admits no conclusions regarding the actual
appearance of nonsmall differences in (6).
In order to abandon the requirement of equally spaced

energies E0
n [see above Eq. (17)], let us consider an

unperturbed Hamiltonian H̃0 with the same eigenvectors
jni0 as the original H0, but with modified energies
Ẽ0
n ¼ E0

n þ ϵn. In view of (1), one anticipates that the
corresponding expectation value Ã0ðtÞ still remains close
toA0ðtÞ for sufficiently small ϵn and not too large t. Indeed,
it can be rigorously shown [19] that

jÃ0ðtÞ −A0ðtÞj ≤ ΔAjtj max
1≤n≤N

jϵnj=ℏ: ð25Þ

Taking for granted that the unperturbed Hamiltonian H̃0

exhibits equilibration but not thermalization (see beginning
of the Letter), we denote its relaxation time by trel; i.e.,
Ã0ðtÞ remains very close to some (nonthermal) equilibrium
value Aeq for (almost) all t ≥ trel. It follows with (25) that
A0ðtÞ also exhibits practically the same initial relaxation
behavior and then remains close toAeq for quite some time,
provided jϵnj ≪ ℏ=trel for all n ¼ 1;…; N. Recalling that
the energy level density is exponentially large in the
degrees of freedom [22], these conclusions must actually
apply to rather general nonequidistant energies Ẽ0

n.
Returning to our perturbed systems of the form (3),

where the considered ensemble of V ’s satisfies the rather
weak assumptions mentioned above, we can, thus, con-
clude from (6), (14), (23), and (24) that the perturbed
expectation values AðtÞ also exhibit an initial relaxation
and then remain close to Aeq for quite some time [24], at
least for the vast majority of perturbations V, and provided
they are sufficiently weak so that

σ2v ≪
1

32π

ℏD
trel

: ð26Þ

On the other hand, ultimate thermalization for most such
H’s in (3) has been established in Refs. [5,26]. Thus,

recalling the considerations at the beginning of our Letter,
all those “typical” H’s exhibit prethermalization.
Finally, upon defining modified perturbations Ṽ via

Ṽ0
mn ≔ V0

mn − δmnϵn, we can conclude, with Eq. (3), that
H̃0 þ Ṽ ¼ H. Hence, the vast majority of those perturba-
tions Ṽ of H̃0 must, again, entail prethermalization. In
doing so, the ϵn’s are often expected to be so small that the
resulting ensemble of Ṽ ’s is almost identical to the original
ensemble of V ’s (see below). More generally, since the
modified energies Ẽ0

n need no longer be ordered by
magnitude, even substantially more general ensembles of
Ṽ’s than of V ’s are actually admitted, see also [19]. Along
similar lines, a possible asymmetry of the V0

nn distribution
can also be removed, as announced below (18).
Next, we turn to the question of how far perturbations

which satisfy (26) are “weak” in some physically mean-
ingful sense. Quite obviously, such considerations are only
possible in terms of nonrigorous arguments and rough
estimates.
First of all, typicality of thermalization, as invoked below

(26), trivially fails for vanishing perturbations and, hence,
may possibly still fail for extremely weak perturbations
[2,27]. Yet, a closer inspection of the nonperturbative
approach from Refs. [5,26] suggests [28] that typicality
of thermalization generally does apply provided Γ ≫ D
[cf. Eq. (24)], and thus,

σv ≫ D: ð27Þ
In particular, the diagonal matrix elements V0

nn are then
typically much larger than the level spacing D, thus,
corroborating the claim below (26) that the ensembles of
Ṽ’s and of V ’s are often quite similar.
Second, while the unperturbed system H̃0 is assumed not

to thermalize for the given initial condition ρð0Þ, one still
expects that it exhibits the usual thermodynamic properties
when the system state happens to be the microcanonical
ensemble ρ0MC ≔ N−1PN

n¼1 jni00hnj corresponding to the
energy window IMC ≔ ½E − δE;E� introduced below
Eq. (16). Denoting by ΩðEÞ the number of energy levels
Ẽ0
n below E, by kB Boltzmann’s constant, and by SðEÞ ≔

kB ln½ΩðEÞ� the entropy, the temperature is, thus, given by
TðEÞ ≔ 1=S0ðEÞ. Moreover, δE must not exceed kBTðEÞ,
otherwise, the level density would no longer be (approx-
imately) constant throughout IMC [as assumed below
Eq. (16)]. Now, it seems reasonable to say that a perturba-
tion is weak if it does not notably change the thermal
equilibrium properties [SðEÞ, TðEÞ, heat capacity, state of
matter, etc.] of the unperturbed system. Closer inspection of
the approach from Refs. [5,26] implies that the perturba-
tions are weak in this sense as long as Γ ≪ kBTðEÞ
(otherwise, regions with different level densities start to
“interact” via the perturbation). According to (24), this
amounts to σ2v ≪ kBTðEÞD. Focusing on the special
(largest possible) choice δE ¼ kBTðEÞ and exploiting
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D ≔ δE=N, we arrive at σv ≪
ffiffiffiffi
N

p
D and σ2v ≪ δE D. The

first relation complements the lower bound from (27).
Thus, since N is exponentially large in the degrees of
freedom, the range of admitted σv values is still very large.
The second relation agrees with (26) if trel is comparable to
ℏ=δE. As shown in Ref. [29], this is, indeed, the case for a
quite large class of Hamiltonians H̃0, observables A, and
initial conditions ρð0Þ.
Alternatively, a perturbation may be considered as weak

if the perturbed expectation valueAðtÞ remains for (almost)
all sufficiently large times t close to the expectation value
Trfρ0MCAg, which the unperturbed system would assume in
thermal equilibrium. By similar arguments as above, one
can see that this alternative weak perturbation criterion is
essentially equivalent to the one from the previous para-
graph and the condition (27).
Thus, altogether, Eq. (26) seems to be a physically very

natural weak perturbation condition, and it appears rea-
sonable to conjecture that prethermalization will, in gen-
eral, be ruled out if (26) is violated. We plan to further
pursue this issue in our future work.
In summary, prethermalization has been established for a

very large class of integrable (nonthermalizing)
Hamiltonians H̃0 and weak perturbations Ṽ, which closely
imitate the essential features of many particular examples
of interest in this context. Thus, adopting the common lore
of random matrix theory [3,5,16,18], the same conclusion
is also expected to apply “typically” or “with overwhelm-
ing likelihood” to any such given example, unless there is
some a priori reason (inappropriate choice of the ensemble,
another nonthermalizing system very nearby, etc.) why the
specific example at hand must be one of the very rare
exceptions with respect to every admitted Ṽ ensemble
[22,25,26,29,30]. Remarkably, the same predictions also
apply to any other H̃0 which exhibits equilibration but not
thermalization, for instance due to many-body localization
effects [1,31,32].
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