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The no-programing theorem prohibits the existence of a universal programmable quantum processor.
This statement has several implications in relation to quantum computation but also to other tasks of
quantum information processing, making this construction a central notion in this context. Nonetheless, it is
well known that, even when the strict model is not implementable, it is possible to conceive of it in an
approximate sense. Unfortunately, the minimal resources necessary for this aim are still not completely
understood. Here, we investigate quantitative statements of the theorem, improving exponentially previous
bounds on the resources required by such a hypothetical machine. The proofs exploit a new connection
between quantum channels and embeddings between Banach spaces which allows us to use classical tools
from geometric Banach space theory in a clean and simple way.
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Since the early days of quantum information theory,
no-go theorems have served as a guideline in the search
of a deeper understanding of quantum theory as well as for
the development of applications of quantum mechanics to
cryptography and computation. They shed light on those
aspects of quantum information which make it so different
from its classical counterpart. Some renowned examples
are the no-cloning [1], no-deleting [2], and no-programing
[3] theorems.
The no-programing theorem concerns the so-called uni-

versal programmable quantum processor (UPQP) [4]. A
UPQP is a universal machine able to perform any quantum
operation on an arbitrary input state of fixed size, program-
ing the desired action in a quantum register inside the
machine (a quantum memory). It can be understood as
the quantum version of a stored-program computer. For the
sake of simplicity, we will consider the programmability of
unitary operations, although this is not really a restrictive
assumption [5]. With this figure of merit, the no-programing
theorem is stated as the nonexistence of a UPQP using finite-
dimensional resources. The key observation made in Ref. [3]
is that in order to program two different unitaries we need
two orthogonal program states. Then, the infinite cardinality
of the set of unitary operators, even in the case of a qubit,
leads immediately to the requirement of an infinite-dimen-
sional memory. Similar consequences follow for the related
concept of universal programmable quantum measurements
[6–8], which are machines with the capability to be pro-
grammed to implement arbitrary quantum measurements.
From a conceptual point of view, the no-programing

theorem points out severe limitations in how universal
quantum computation can be conceived. However, these
limitations can be surpassed by relaxing the requirements

on the model of UPQP. In particular, one can consider
programmable devices working noisily or probabilistically.
Indeed, in the past two decades, several proposals of such
approximate UPQPs have appeared in the literature
[3,9,10]. Thus, it is interesting to look for more quantitative
statements about quantum programmability. To put it in
explicit words, we worry here about the relation between
the memory size of an approximate UPQP, m, and both the
accuracy of the scheme, ε, and the size of the input register
in which we want to implement the program, d. Despite
their relevance, these relations are still poorly understood.
Existing results are summarized in Table I.
In this Letter, we provide new upper and lower bounds

which substantially clarify the ultimate resources required
by approximate UPQPs. Indeed, the results in this work
entail exponential improvements over previously known
results. Our bounds show the optimal dependence of m
with ε and d separately. In fact, the lower bound of
Theorem 3 is nearly saturated for fixed ε by the perfor-
mance of port-based teleportation, which was originally
conceived as a UPQP [10]. On the other hand, we deduce
an upper bound, (2), saturating almost optimally the scaling
with ε of the bound from Ref. [11].
The proofs presented in this Letter are based on a

connection with geometric functional analysis that we
uncover. The use of techniques from this branch of func-
tional analysis, in particular, from Banach space theory and
operator spaces—as is the case in this work—have proven
to be very fruitful in the study of different topics of
quantum information theory such as entanglement theory,
quantum nonlocality, and quantum channel theory (see
[15,16], and references therein). We find the path to put
forward this mathematical technology to the framework
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studied here. More precisely, we characterize UPQPs as
isometric embeddings between concrete Banach spaces
which are, in addition, complete contractions (considering
some operator space structure). Once this characterization
is established, the results about UPQPs are deduced by
using classical tools from local Banach space theory in a
simple and clean way. We think that the general ideas
presented here and potential generalizations of them can
provide further insights in other contexts related with
quantum computation and cryptography.
In this main text, we limit ourselves to explain the

results, stressing the ideas behind them [17].
Preliminaries.—Given a finite dimensional Hilbert

space H, we denote by BðHÞ or S1ðHÞ the space of
(bounded) operators on H with the operator or the trace
norm, respectively. We will also denote by UðHÞ andDðHÞ
the subset of unitary and density operators. The set of
quantum channels (that is, completely positive and trace
preserving maps BðHÞ → BðHÞ) will be denoted by
CPTPðHÞ. In the particular case of unitary channels we
will use the notation CUðxÞ ¼ UxU† for x ∈ BðHÞ,
U ∈ UðHÞ. We will usually consider a d-dimensional
complex Hilbert space Hd as the input state space and
an ancillary m-dimensional complex Hilbert space Hm as
the memory of the programmable device under consider-
ation. When logarithms are used, they are generically
considered in base 2.
Definition 1.—A quantum operation P ∈ CPTPðHd ⊗

HMÞ is a d-dimensional universal programmable quantum
processor, UPQPd, if for every U ∈ UðHdÞ there exists a
unit vector jϕUi ∈ Hm such that

TrHm
½Pðρ⊗ jϕUihϕUjÞ� ¼UρU†; for every ρ ∈DðHdÞ:

Essentially, this is the concept of the universal quantum
gate array introduced in Ref. [3] and whose impossibility
is the content of the no-programing theorem discovered
also there. As we said in the previous section, the no-
programing theorem does not apply if one considers a
relaxation of the previous definition, that is, in the case of
approximate UPQPs. Two notions of approximate UPQPs

have been considered in the literature: probabilistic settings
[3,22], which implement exactly the desired unitary with
some probability of failure, obtaining information about
the success or failure of the procedure; and deterministic
UPQPs [23], which always implement an operation which
is close to the desired one. Notice that both notions are
related, since probabilistic UPQPs can be also understood
as deterministic ones by just ignoring the information about
the success or failure of the computation. A natural way to
express these notions of approximation is through the
distance induced by the diamond norm [24]:
Definition 2.—We say that P ∈ CPTPðHd ⊗ HmÞ is a

d-dimensional ε-universal programmable quantum proces-
sor, ε-UPQPd, if for every U ∈ UðHdÞ there exists a unit
vector jϕUi ∈ Hm such that

1

2
kTrHm

½Pð· ⊗ jϕUihϕUjÞ� − CUð·Þk⋄ ≤ ε;

where k · k⋄ denotes the diamond norm.
Two relevant examples of approximate UPQPs are (i) the

one built based on standard quantum teleportation [3],
which can be understood as a probabilistic ε-UPQPd with
ε ¼ 1 − ð1=d2Þ andmemory dimensionm ¼ d2, and (ii) the
protocol of port-based teleportation itself [10], which can
be arranged as a probabilistic or deterministic ε-UPQPd
with memory dimension m, scaling as ∼2ð4d2 log dÞ=ε2

[13,14].
Notice that, in the first case, the resources used are

remarkably efficient. The counterpart is that the success
probability (accuracy of the setting) is rather low. In
contrast, in the second example, the accuracy can be
arbitrarily improved at the price of increasing the dimen-
sion of the resource state. These examples show the rich
landscape of behaviors displayed by UPQPs, which makes
the understanding of these objects challenging. The results
presented here shed new light on them.
The connection.—In this section, we explain, omitting

proofs, the key connection between ε-UPQPd and isometric
embeddings between Banach spaces at the heart of the
proofs of our main results.

TABLE I. Best known bounds for the optimal memory size of UPQPs in comparison with the results presented here. K denotes
universal constants, not necessarily equal between them. Let us point out that the bound from Ref. [11] was deduced for programmable
measurements instead of UPQPs. However, since a UPQP always can be turned into a universal programmable quantum measurement,
this lower bound also applies for the case studied here. Notice that the alluded bound, although it enforces a strong scaling of m with ε,
becomes trivial for large input dimension d. It is in this regime where the bound from Ref. [12] is more informative but still exponentially
weaker than the bound provided by Theorem 3.

Previous results This work

Lower bounds m ≥ Kð1=dÞðdþ1Þ=2ð1=εÞðd−1Þ=2 [11]
m ≥ 2½ð1−εÞ=K�d−ð2=3Þ log d [Theorem 3]

m ≥ Kðd=εÞ2 [12]

Upper bounds m ≤ 2ð4d2 log dÞ=ε2 [10,13,14] m ≤ ðK=εÞd2 [Eq. (2)]
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The crucial ingredient is the characterization of UPQPd
as isometric embeddings Φ∶S1ðHdÞ ↪ BðHmÞ with com-
pletely bounded norm kΦkcb ≤ 1, i.e., complete contrac-
tions. For ε-UPQPd, the characterization holds, distorting
the isometric property of the embedding with some
disturbance δðεÞ. Turning to the completely bounded norm
of Φ, it can be understood in this particular case as follows.
Let us put each V ∈ BðHd ⊗ HmÞ in one-to-one corre-
spondence with the linear map

ΦV∶S1ðHdÞ ↪ BðHmÞ;
σ ↦ ΦVðσÞ ≔ TrHd

VðσT ⊗ IdMÞ: ð1Þ

Given this correspondence, the completely bounded norm
of ΦV can be simply regarded as kΦVkcb ¼ kVkBðHd⊗HmÞ.
More generally, within the theory of operator spaces,

S1ðHdÞ and BðHmÞ are endowed naturally with a sequence
of norms when tensorized with the set of k × k complex
matricesMk. Then, kΦkcb is nothing but supkkIdMk

⊗ Φk.
The equivalence between this more profound definition of
the completely bounded norm and the one given before is
provided by a well-known result in operator space theory
(see [25], Proposition 8.1.2). We emplace the interested
reader to Ref. [17].
We are now in a position to state formally the results of

this section.
Theorem 1.—Every unitary ε-UPQPd, CV∈CPTPðHd⊗

HmÞ, defines a completely contractive map ΦV∶ S1ðHdÞ →
BðHmÞ such that

kσkS1ðHdÞ ≥ kΦVðσÞkBðHmÞ ≥ ð1 − εÞ1=2kσkS1ðHdÞ

for every σ ∈ S1ðHdÞ. Such a map is called a completely
contractive ε embedding.
We also found true a converse of this statement.
Theorem 2.—Every completely contractive map

Φ∶S1ðHdÞ → BðHmÞ, such that

kσkS1ðHdÞ ≥ kΦðσÞkBðHmÞ ≥ ð1 − δÞkσkS1ðHdÞ

for every σ ∈ S1ðHdÞ, defines a ε-UPQPd with ε ¼ ffiffiffiffiffi
2δ

p
and a memory dimension at most dm3 ¼ dimðHd ⊗ H⊗3

m Þ.
This establishes a characterization rather than a simple

relation between the objects considered.
Even when the proofs of these theorems were left outside

the main text, let us finish this section noting that the
starting point to establish this characterization is precisely
the correspondence considered above, (1).
Results about UPQPs.—The characterization given in

the preceding section leads to a better understanding of
UPQPs, which is summarized in the last column of Table I.
These results, presented in the remainder of the Letter,
reduce drastically the existing gaps between the previous

lower and upper bounds in the study of UPQPs. We now
sketch the proof of them.
Let us begin with the upper bound:

m ≤
�
C̃
ε

�
d2

; ð2Þ

where C̃ is a constant. Although this bound follows easily
from a ε-net argument, we find it instructive to follow the
lines of the proof of Theorem 2 in this simplified case.
First, we think at the level of embeddings between

Banach spaces and consider the following mapping:

Φ∶ S1ðHdÞ ↪ l∞fball½BðHdÞ�g;
σ ↦ ðTr½AσT �ÞA∈ball½BðHdÞ�; ð3Þ

where ballðXÞ denotes the unit ball of a Banach space X
and, for a given set X , l∞ðXÞ denotes the space of
bounded functions from X to C endowed with the
supremum norm. Then, it is straightforward to see that
this embedding is isometric. Indeed, noting that BðHdÞ is
the Banach dual of S1ðHdÞ, the embedding considered
is usually recognized as a standard consequence of the
Hahn-Banach theorem [26].
In addition, the fact that l∞ðXÞ can be understood as a

commutative C� algebra guarantees that the bounded and
completely bounded norms of any map Φ∶E → l∞ðXÞ
coincide (see [25], Proposition 2.2.6). This also allows us to
drop out the awkward transposition in (3).
In order to obtain a finite-dimensional version of the

embedding (3), we discretize the image by means of a ε net

on UðHdÞ. That is, we consider a finite sequence fUigjI ji¼1 ⊂
UðHdÞ such that for everyU ∈ UðHdÞ there exists an index
i ∈ I verifying kU −UikBðHdÞ ≤ ε. Then, we define the
embedding

Φ̃∶ S1ðHdÞ ↪ l∞ðIÞ ↪ BðHIÞ;
σ ↦ ðTr½Uiσ�ÞjI ji¼1 ↦

X
i∈I

Tr½Uiσ�jiihij;

HI being a complex Hilbert space of dimension jI j.
Now, it is an easy exercise to see that

kσkS1ðHdÞ ≥ kΦ̃ðσÞkBðHI Þ ≥
�
1 −

ϵ2

2

�
kσkS1ðHdÞ;

for every σ ∈ S1ðHdÞ. Then, Φ̃ is a particular instance of
a map in the conditions of Theorem 2, but its very simple
structure allows us to get to the conclusion of the theorem
very easily in this case, as we show now.
The embedding Φ̃ suggests considering the unitary

channel CV , with V ∈ UðHd ⊗ HIÞ being the controlled
unitary:
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V ¼
X
i

Ui ⊗ jiihij;

where the register HI plays the role of a memory. Then,
according to Definition 2, let us compute the diamond
distance of this channel (with a suitable memory state) with
any unitary U ∈ UðHdÞ. Since the action of the considered
channel on the input state is unitary, the problem reduces in
this case to computing the usual trace distance

min
i∈I

max
jψi∈ballðHdÞ

1

2
kUijψihψ jU†

i −Ujψihψ jU†k1

¼ min
i∈I

max
jψi∈ballðHdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhψ jU†

i Ujψij2
q

≤ max
jψi∈ballðHdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 −

ϵ2

2

�
2

s
≤ ϵ:

Therefore, the considered channel CV is a ε-UPQPd
with memory dimension jI j, the cardinality of the ε net
considered. This cardinal can be taken lower than ðC̃=εÞd2
for some constant C̃ (see [15], Theorem 5.11), which is the
announced bound.
Because of the particular structure of the constructed

ε-UPQPd, we notice that the program states encoding

different unitaries of the ε net fUigjI ji¼1 are indeed orthogo-
nal. This is in consonance with the fact discovered by
Nielsen and Chuang that for a UPQPd (ε ¼ 0) any two
program states encoding different unitaries must be
orthogonal [3]. Then, given a ε-UPQPd, it is tempting to
try to reverse the previous ε-net argument to find jI j
mutually orthogonal program states, lower bounding in this
way the dimension m with the cardinality jI j. However, in
general (ε > 0), the orthogonality between program states
is no longer true (one can consider, e.g., the case of port-
based teleportation [10]). Moreover, previous lower bounds
in Refs. [11,12] (see Table I) were based precisely on direct
ε-net arguments which, in the end, essentially reduce to
rough volume estimations. It turns out that the type
constants (defined below) of the Banach spaces involved
in Theorem 1 give more refined information of their
geometry. This, together with the key property that type
constants are preserved by subspaces, allows us to conclude
from Theorem 1 the following exponential improvement
over previous lower bounds on m.
Theorem 3.—Let P∈CPTPðHd⊗HmÞ be a ε-UPQPd,

then

dimHm ≡m ≥ 2½ð1−εÞ=3C�d−ð2=3Þ log d

for some constant C. Furthermore, if P is a unitary channel,
one has m ≥ 2½ð1−εÞ=C�d.
Let us sketch how Theorem 3 can be obtained from

Theorem 1. For simplicity, we restrict to the case where the

considered UPQP is a unitary channel. The general case
can be handled by means of a Stinesprings dilation of the
channel under consideration.
The basic idea consists in studying ε embeddings

between S1ðHdÞ and BðHmÞ. These two spaces are
extremely far apart from each other as Banach spaces,
and it is this intuition which leads us to Theorem 3. A quick
argument to study necessary conditions on the dimensions
of the spaces involved is provided considering their type-2
constants. Given a Banach space X, its type-2 constant
T2ðXÞ is the infimum of the constants T satisfying the
inequality

�
E

�
k
X
i

εixik2X
��

1=2
≤ T

�Xn
i¼1

kxik2X
�

1=2

for every sequence fxigni¼1 ⊂ X. There, E½·� is the expected
value over any combination of signs fεigni¼1 ∈ f−1; 1gn
with uniform weight 1=2n, that is, independent identically
distributed Rademacher random variables [17]. Let us point
out that, despite the great impact of the notion of type and
cotype on Banach space theory in the past decades, in the
context of quantum information it appeared only very
recently in Ref. [27].
Since ΦV in Theorem 1 maps S1ðHdÞ into a subspace of

BðHmÞ–with distortion ð1 − εÞ1=2–the following relation
between type constants of these spaces is enforced:

T2½S1ðHdÞ� ≤
1

ð1 − εÞ1=2 T2fΦV ½S1ðHdÞ�g

≤
1

ð1 − εÞ1=2 T2½BðHmÞ�:

The first inequality follows from ΦV being a ε embedding
(in the sense of Theorem 1), while the second inequality
follows from the property of type constants being preserved
by subspaces. Introducing in those inequalities the follow-
ing known estimates for type constants of the spaces
involved:

ffiffiffi
d

p
≤ T2½S1ðHdÞ�; T2½BðHmÞ� ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C logm

p
;

we obtain the desired bound:

d ≤
C

ð1 − εÞ logm ⇒ m ≥ 2½ð1−εÞ=C�d:

The constant here, as well as in the general case of
nonunitary channels, can be taken equal to 4.
To finish, let us mention that the type argument sketched

above can be made more explicit, obtaining bounds for
the memory size necessary to program specific families of
unitaries [17].
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Discussion.—In this work, we have studied the minimal
conditions, in terms of resources, that have to be satisfied
by approximate UPQPs. The bounds presented here have
clarified several questions about the optimality of this
conceptual construction. In fact, we have almost closed
the gaps in the optimal scaling of the memory size of
UPQPs with the accuracy ε and input dimension d, when
considered separately.
First, we have deduced the upper bound (2) giving a

construction based on an ε net on UðHdÞ. In this sense, this
construction can be seen as a generalization to the case of
UPQPs of the programmable measurement introduced in
Ref. [8]. As in that case, our proposal improves exponen-
tially the memory resources consumed by other known
constructions (see Table I). In fact, the bound (2) exponen-
tially improves the scaling with the accuracy ε of port-
based teleportation and nearly saturates the lower bound
deduced in Ref. [11] in the context of universal program-
mable measurements. This shows that, indeed, this is the
optimal dependence on that parameter also in the case of
UPQPs. More generally, it also outperforms port-based
teleportation whenever C̃=ε ≤ d4=ε

2

. Obviously, the draw-
back is that the optimal ε-UPQPd constructed here cannot
be used to achieve any kind of teleportation.
On the other hand, the main result obtained is the lower

bound expressed by Theorem 3. The first and most obvious
consequence of this result is that, for any fixed value of ε,
the dimension of the memory of a ε-UPQPd must scale
exponentially in d. Indeed, in this case the dependence
with d in the stated lower bound is exponentially stronger
than all known previous results. Furthermore, this bound
is saturated in this sense by the performance of port-
based teleportation, referred to in Table I as the best upper
bound for m.
Notwithstanding, more difficult relations ε-d can be

considered, the general scaling being in this case still an
open question. However, we also contribute to this point,
giving an upper bound for the achievable accuracy by
UPQPs with a memory of size polyðdÞ. As a straightfor-
ward consequence of Theorem 3, we obtain the following.
Corollary 1.—For any ε-UPQPd with memory size

m ≤ kds for some constants k and s, the following inequal-
ity is satisfied:

ε ≥ 1 − C0
k;s

log d
d

;

where C0
k;s ¼ 3Cðsþ log kþ 2=3Þ.

This severely restricts the accuracy achievable by
ε-UPQPd with polynomially sized memories.
Moreover, due to the relation between UPQPs and other

tasks, such as quantum teleportation [3,10], state discrimi-
nation [6,28], parameter estimation [29], secret and blind
computation [30], homomorphic encryption [31], quantum
learning of unitary transformations [32], etc., we believe

that the knowledge about them could also be relevant in a
wide variety of topics. For example, as a direct application
of the results presented here, we also obtain a lower bound
for the dimension of the resource space necessary to
implement deterministic port-based teleportation. There
exist more accurate bounds for this particular case (see
[13]), but notice that we did not use in any way the many
symmetries presented in that protocol, and our bound is
generic for any protocol implementing, in some sense, a
UPQP. Furthermore, it is deduced from our results that the
unavoidable exponential scaling with ε−1 in the case of
port-based teleportation comes entirely from the signaling
restrictions imposed in this protocol and cannot be deduced
from the programing properties of it.
Finally, some interesting questions related with the work

presented here arise. The most direct one is whether it is
possible to deduce a lower bound on m unifying the bound
from Ref. [11] and the bound from Theorem 3. This could
give more information about the optimality of UPQPs in
cases beyond the scope of this work. In relation with that,
it would be desirable to improve the exponents in the
bounds to match exactly lower and upper bounds, though
this will not affect qualitatively the consequences presented
here. Further on, it would be also very interesting to look
for relations between memory requirements on UPQPs and
circuit complexity problems. A way to explore this line
could consist of looking for correspondences between
circuits and memory states in UPQPs.
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