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Quantum computers will require encoding of quantum information to protect them from noise. Fault-
tolerant quantum computing architectures illustrate how this might be done but have not yet shown a
conclusive practical advantage. Here we demonstrate that a small but useful error detecting code improves
the fidelity of the fault-tolerant gates implemented in the code space as compared to the fidelity of
physically equivalent gates implemented on physical qubits. By running a randomized benchmarking
protocol in the logical code space of the [4,2,2] code, we observe an order of magnitude improvement in
the infidelity of the gates, with the two-qubit infidelity dropping from 5.8(2)% to 0.60(3)%. Our results are
consistent with fault-tolerance theory and conclusively demonstrate the benefit of carrying out computation
in a code space that can detect errors. Although the fault-tolerant gates offer an impressive improvement in
fidelity, the computation as a whole is not below the fault-tolerance threshold because of noise associated
with state preparation and measurement on this device.
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We have entered an exciting stage in the development of
quantum computers. Small-scale, prototype quantum devi-
ces with a limited number of qubits are beginning to appear,
and companies such as IBM and Rigetti are making such
devices available in the cloud. Although current quantum
devices tend to be too small, have limited interconnectivity
between qubits, and are too noisy to allow meaningful
quantum computation, they are an important step forward
in the aim to build a large-scale universal quantum
computer. These small devices are sufficient to act as the
test bed for proof of principle concepts such as the
implementation of simplified quantum algorithms [1],
quantum walks [2], quantum machine learning [3], and
testing the ability to detect and correct errors.
Codes that can be implemented on current small noisy

quantum devices are perfect test beds for the ideas of fault
tolerance. The question we address here is whether such a
code can conclusively show a benefit for encoded compu-
tation on current small-scale noisy quantum devices. As we
discuss later, it is not obvious that the type of noise that
exists in current quantum devices will be amenable to such
codes. We study the [4,2,2] error detecting code, which is
one of the smallest interesting codes. For instance, it can be
concatenated with the toric code [4,5], can be viewed as one
of the faces of the distance 3 color code [6], or alternatively,
as an encoding layer of the C4/C6 code of Ref. [7].
Experimental quantum error correction and fault toler-

ance is still in its infancy, but several impressive results
have been achieved. Reference [8] demonstrates the ability
to prepare logical qubits of the [4,2,2] code fault tolerantly
using trapped atomic ions, and Ref. [9] replicates this on
superconducting qubits. References [10,11] implement

repetition codes and observe protection against bit-flip
errors. Reference [12] uses quantum error correction to
extend the lifetime of quantum information stored in a
superconducting resonator, and Refs. [13,14] implement
logical gates inside of a quantum code.
Recently, Gottesman [15] suggested that the [4,2,2] code

could be implemented fault tolerantly with only five
physical qubits. He argued that for a small experiment
to conclusively demonstrate fault tolerance, the following
must be met. (1) The encoded circuit must have a lower
error rate for all circuits in the family of circuits of interest.
(2) They must be complete circuits; i.e., they must include
the initial state preparation and the final measurements.
(3) The original circuit and the encoded circuit must, in the
absence of error, produce the same output distribution.
(4) It is only meaningful to compare error rates between
circuits implemented in the same system. Additionally,
Gottesman noted that for the purposes of demonstrating
fault tolerance, it is still interesting to consider circuits
created from nonuniversal gate sets.
Vuillot [16] attempted to meet Gottesman’s criteria using

the [4,2,2] code on the IBM Quantum Experience (IQX).
Vuillot comprehensively explored the different types of
circuits available in the [4,2,2] code, though the method-
ology used meant it was difficult to extract a clear signal
from the data as to the overall benefit (or lack thereof) in
utilizing the [4,2,2] code on that noisy device. More
recently, Willsch et al. [17] simulated the [4,2,2] code
numerically and tested it on the IQX. Their analysis
suggests that a fault-tolerant protocol could improve
performance, provided that errors are due to control errors
rather than dominated by decoherence.
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While the inclusion of state preparation and measure-
ment (SPAM) errors in Gottesman’s proposed protocol are
necessary steps in demonstrating that a computer might
meet the fault-tolerance threshold, the inclusion of such
errors is not necessary in demonstrating that the use of
fault-tolerant gates and appropriate logical encoding
improve the fidelity of the logical gates compared to their
physical counterparts. In particular, an improvement in the
fidelity of such logical gates will address whether the
theoretical benefits expected from encoding quantum
information can be physically realized or if the noise
profile (such as correlated errors) will preclude any such
benefit. The answer to this question is not obvious.
Consequently, rather than examining the error rate of
particular circuits created from fault-tolerant gates, we
measure the infidelity of the Clifford group elements
created from such gates and the circuits arising from such
Clifford elements. Given the proposed uses of the [4,2,2]
code discussed above, the ability to accurately create such
gates is of high interest. We look at the average infidelity
of the gates (defined later) and demonstrate a conclusive
advantage to using such fault-tolerant gates to generate
these elements and circuits. We do this by utilizing the
technique of randomized benchmarking (RB) [18,19] to
measure the gate errors in a way that is robust to SPAM
errors to show that the logical two-qubit gates outperform
their physical counterparts. Using RB in the logical code
space [20] of the [4,2,2] code, we demonstrate that the two-
qubit average infidelity decreases from 5.8(2)% to 0.60(3)%,
an improvement of roughly an order of magnitude.
However, our results do not imply that the IBM Q

Rüschlikon device is operating below the fault-tolerance
threshold. As emphasized by Gottesman [15], the threshold
involves improving all aspects of a quantum circuit after the
encoding, including the SPAM errors, and our approach
using RB is insensitive to SPAM. Thus, while the fault-
tolerant encoded gates do improve gate fidelity, the device
is not yet convincingly below threshold for complete
circuits.
Background.—RB provides an efficient method for the

partial characterization of the quality of a gate implemen-
tation in a way that is robust to SPAM and to small,
arbitrary gate-dependent noise [21,22]. It gives the fidelity
between the identity channel and the averaged noise E on
the gate set. The (Haar) average fidelity is

FðEÞ ¼
Z

dψhψ jEðjψihψ jÞjψi; ð1Þ

and the average infidelity is 1 − F.
Recent work by Carignan-Dugas et al. [23] relates

average fidelity to the gate set circuit fidelity, a quantity
which compares all possible sequences of circuits of m
noisy gates implemented from the noisy gate set G̃ to their
ideal analog in G. A circuit is a sequence of m elementary

gates, and the average gate set circuit fidelity is
F ðG̃;G; mÞ ≔ E½FðG̃m∶1;Gm∶1Þ�, where G̃ and G are noisy
and ideal gates drawn from the respective gate sets.
Reference [23] proves for a single qubit (and conjectures,
with numerical evidence, for two qubits) that, other than a
potential SPAM mismatch, the two fidelities are closely
related. This confirms the average infidelity of a gate set as
an appropriate metric even when one is considering the
fidelity of circuits built from such gates.
The four-qubit code.—The [4,2,2] code is defined by

the stabilizer generators XXXX and ZZZZ [24,25].
Reference [15] details how to implement it in a fault-
tolerant manner on a system with limited connectivity. To
measure the logical qubits in the computational basis, one
simply measures all four qubits. Odd parity heralds an error
and the run should be discarded.
There are eight logical gates that make up the code gate

set. They split into six “active” gates and two “virtual”
gates that can be implemented in software by relabeling the
physical qubits. These are shown in the table below, where
P is the phase gate [diagð1; iÞ], SWAPij swaps qubits i and
j, C-Z is the controlled-Z gate, and CNOTij acts from
control i to target j.

Physical gates Logical equivalent

X⊗4; Z⊗4 I ⊗ I
X ⊗ I ⊗ X ⊗ I X ⊗ I
X ⊗ X ⊗ I ⊗ I I ⊗ X
Z ⊗ Z ⊗ I ⊗ I Z ⊗ I
Z ⊗ I ⊗ Z ⊗ I I ⊗ Z
H ⊗ H ⊗ H ⊗ H SWAP12∘ðH ⊗ HÞ
P ⊗ P ⊗ P ⊗ P ðZ ⊗ ZÞ∘ðC-ZÞ
SWAP12 CNOT12

SWAP13 CNOT21

The final ingredient is the logical j00i state preparation.
Although Ref. [15] suggests a method for doing this fault
tolerantly, the architecture of the IBM-QX5 means imple-
mentation is costly in terms of gates required. Since RB
is robust to SPAM, it was decided not to prepare the j00i
state in a fault-tolerant manner (see Ref. [26] for a fuller
discussion).
RB with the real-Clifford group.—RB uses long sequen-

ces of gates with the aim to amplify small errors in the
implementation of these gates. By choosing the sequences
of gates from a unitary 2-design [29,30], the average noise
channel E over random sequences of such gates reduces to a
depolarizing channel with the same average fidelity FðEÞ.
By sampling over a unitary 2-design, the integral in

Eq. (1) is replaced by a sum over the design. Often, the
Clifford group is chosen as the unitary 2-design; however
in this case the phase gate cannot be implemented in the
[4,2,2] code in a fault-tolerant manner. If we limit ourselves
to fault-tolerant gates, the lack of a phase gate makes the
Clifford group inaccessible.
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Our results make essential use of a modified version of
RB called real RB [31,32]. In real RB, one can relax the
unitary 2-design condition to any orthogonal 2-design and
still effectively perform RB with the following protocol.
(1) Choose a sequence length m and prepare a state (ρ)
traditionally in the computational basis (but see later).
(2) Apply a chosen number of random gates m independ-
ently and uniformly drawn from the orthogonal 2-design
followed by a further inversion gate, which ideally would
result in a net sequence equal to the identity. (3) Measure ρ
with E (an effect operator of a positive-operator valued
measure) to determine if it has been returned to the
starting state.
The above steps are repeated in order to estimate the

survival probability q̄ over a range of sequence lengths.
Reference [32] proves that this can be fit to the model

q̄ðm;E; ρÞ ¼ Aþ bmBþ cmC; ð2Þ
where, with ρ� ¼ 1

2
ðρ� ρTÞ, the constants A, B, and C are

A ¼ 1

d
Tr½E�; B ¼ Tr½Eρþ� − A; C ¼ Tr½Eρ−�:

ð3Þ
For two qubits, we also have FðEÞ ¼ ð9bþ 6cþ 5Þ=20.
The code gate set generates a subgroup of Cð2Þ, the two-

qubit Clifford group that we call the realizable group, Rð2Þ.
The groupRð2Þ has only 576 elements, in contrast to the 11
520 elements of Cð2Þ. Moreover, the average number of
elementary gates in a group element is reduced from about
seven in Cð2Þ to only about four in Rð2Þ, making it more
efficient for RB as well. Finally, Rð2Þ provably yields an
orthogonal 2-design, so the real RB protocol applies [26].
There are subtleties that may impact when fitting the above
formulas to an error detecting experiment, although these did
not impact our analysis. For a fuller discussion, see Ref. [26].
Implementation details.—We implemented logical RB

and physical RB on the device using Rð2Þ as the twirling
group to measure the average infidelities. If there is an
advantage to computing in the logical space defined by the
[4,2,2] code, then the average infidelity will be lower.
In the Supplemental Material [26], we detail how we

perform RB in such a way as to eliminate the fitting
parameter A. In addition, for certain obvious choices of ρ, B
or C becomes zero [32]. By choosing an appropriate ρ,
we can then fit the sequences from those experiments to a
simpler fitting sequence. In the computational basis, ρ ¼
j00ih00j and ρ− ¼ 0, thus, C ¼ 0. Consequently, if we
perform the RB protocol discussed in Ref. [26] with
ρ ¼ j00ih00j, we can fit to the simplified formula
q̄ðm; j00ih00jÞ ¼ Bbm þ 0.25 to determine b. This is
similar to the ideas discussed in Refs. [33–36] and yields
improved parameter estimates for the same sample size.
To determine the c parameter, we need to move outside

the computational basis for our choice of ρ. In this case,
the optimal method is to rotate ρ by applying a phase gate
followed by a Hadamard gate, inverting this after the twirl,

and measuring h00j in the normal way. Since a fault-
tolerant phase gate cannot be applied in the code space, to
measure c we need to use a non-fault-tolerant phase gate
together with the encoded Hadamard gate; see [26] for
details. When working outside the code, we can implement
the phase and Hadamard gates directly.
In total, this fit procedure requires that we perform four

types of runs for the [4,2,2] code: (1) the run in the
computational basis (a standard run) and (2) the run
initialized with the non-fault-tolerant phase gate (a phased
run), and for the physical qubits (3) the standard run in the
computational basis and (4) the phased run.
Analysis.—The four averaged fitting charts are shown in

Fig. 1(a). This allows us to extract values for b and c and

(a)

(b)

FIG. 1. (a) Fitting charts for the four different types of runs used
to extract the b and c parameters in Eq. (2). The data were fit as
described in the Supplemental Material [26]. Postselection on
invalid code states was used to throw away runs where an error
was detected. The bars show the percentage of detected (and
discarded) runs for the [4,2,2] code runs. The number of initial
errors are greater in the phase run because of the need to perform
an initial non-fault-tolerant gate (see text). (b) Simulation show-
ing survival probabilities for logical “real-Clifford” RB using the
[4,2,2] code and the equivalent physical two-qubit RB. (Here,
we have only shown the “real” runs, not the “phased” runs.) The
same high fidelity four-qubit noise map (fidelity ≈0.99) is used
for the runs, although additional noise is applied to the CNOTs of
the run on physical qubits. The noise map contains single-qubit
errors as well as ZZ errors between neighboring qubits. Although
the combined noise map is high fidelity, the correlated errors are
sufficiently strong that the fidelity decreases when using encoded
gates, meaning the encoded computation performs worse than the
bare physical computation in the correlated noise scenario.
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calculate the fidelity or infidelity using Eq. (1). The
calculations yield an infidelity of 0.60(3)% for the
[4,2,2] code and 5.8(2)% for the two physical qubits.
The uncertainties were obtained through bootstrapping the
experimental data [26].
The question then remains: How much of the benefit is

derived from the ability of the code to detect errors, and
how much is derived from the virtual CNOTs once compu-
tation has been moved into the code space?
We can use the arguments presented in Ref. [20] to

determine this. If, instead of using postselection to discard
runs that we know are in an erroneous code state, we fit to
the complete set of runs obtained for the [4,2,2] code, then
this gives us a method of comparing the performance of the
code where we are detecting errors and one where we are
not. With the caveats that these runs were conducted at
different times from the main runs and that a naive RB fit to
the data was used (see Ref. [26]), this formulation gave an
infidelity that was less than 5.8% but still significantly
higher than the infidelity with error detection. This con-
firms two things. First, there is indeed a benefit in moving
computation into a code that allows virtualization of the
CNOTs, and second, there is still an additional substantial
benefit to using the code to detect errors.
Comparison to correlated noise.—Data on the quantum

devices made available by IBM show that there is signifi-
cant cross talk between connected qubits. One of the
interesting questions answered by this Letter is whether
such cross talk causes correlations strong enough to defeat
any fidelity gains that might occur from using encoded
gates operated in a fault-tolerant way. To illustrate why this
might be the case, we note that a natural noise model for
such correlated noise is to model it as noise of the form
eiθZiZiþ1 for small θ. This model accounts for some of the
correlated noise observed in recent ion trap experiments
[37] and analyzed in Ref. [38].
In Fig. 1(b) we show, by simulation, that even with a

high fidelity noise map, the correlated noise can be
sufficient to prevent any benefit being observed from
computing in the logical code space of the [4,2,2] code.
Discussion.—A useful error detecting code consists of

(1) a code space in which logical quantum gates can be
performed on the encoded quantum information, (2) an
ability to perform certain fault-tolerant gates within the
code space, and (3) the ability to detect if a certain number
of errors (limited by the distance of the code) have
occurred. We have demonstrated how variations of the
RB protocol [20,32] can be used to determine, in a well-
defined and principled manner, whether the fault-tolerant
quantum gates that are supported by such a code space can
be performed with lower infidelity than such equivalent
gates in the raw physical qubits. These specific RB
variations were essential since the [4,2,2] code is not able
to perform the full Clifford group fault tolerantly.
The substantial decrease in the infidelity we have

observed appears to come from two sources. The first is

that it virtualizes the noisiest gate, the CNOT gate, resulting
in a decrease in the infidelity of the averaged gate set noise.
The second is that by allowing error detection (and
subsequent postselection), we see a further decrease in
the infidelity of the averaged gate set, leading to an overall
decrease in infidelity of the fault-tolerant gate set by a
factor of 10.
We have learned from these experiments that the

IBM device does not have noise correlations that are so
strong as to preclude an improved fidelity when using an
encoded gate. As we have shown via numerical simulations
[Fig. 1(a)], a natural noise model [37,38] involving two-
qubit correlated errors between neighbors can preclude an
improved fidelity even when the average error rates are
comparable to those we have observed in the IBM device.
More experiments are required to fully understand the role
that noise correlations play in this device in the context of
fault tolerance.
The analysis of Ref. [23] confirms that the average

fidelity as measured by RB is closely related (as particu-
larized in their analysis) to the average fidelity for all
relevant circuits. Given this, it is clear that the average gate
set fidelity will be substantially higher if the fault-tolerant
gates are used, and we argue that this suffices for a
conclusive demonstration of the benefit of using an error
detecting code with fault-tolerant gates. Recent work has
also shown [39,40] that encoded noise tends to be less
coherent than unencoded noise. Consequently, an improve-
ment in average gate fidelity is also likely to herald an
improvement in other metrics relevant for fault tolerance
such as the diamond distance, although more experiments
would be required to establish this conclusively.
There is at present no complete theory for fitting a RB

decay curve with postselection. While this had minimal
impact on our present study (for the reasons discussed in
Ref. [26]), developing a full theory will be essential for
more detailed studies. A further exciting step would be to
employ the techniques used here together with those
discussed in Ref. [20] to benchmark error-corrected gates.
While devices with sufficient connections to support one,
or maybe a few, error-corrected qubits are on the verge of
becoming available for general experimentation, current
implementations do not yet have conditional measurements
or reinitialization. In the meantime, error detecting codes
on more qubits and implementing different fault-tolerant
gate sets can be examined using the techniques dis-
cussed above.
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[3] D. Ristè, M. P. da Silva, C. A. Ryan, A. W. Cross, A. D.
Córcoles, J. A. Smolin, J. M. Gambetta, J. M. Chow, and
B. R. Johnson, Demonstration of quantum advantage in
machine learning, npj Quantum Inf. 3, 16 (2017).

[4] C. G. Brell, S. T. Flammia, S. D. Bartlett, and A. C. Doherty,
Toric codes and quantum doubles from two-body Hamil-
tonians, New J. Phys. 13, 053039 (2011), arXiv:1011.1942.

[5] B. Criger and B. Terhal, Corrected quantum walk for
optimal Hamiltonian simulation, Quantum Inf. Comput.
16, 1261 (2016), arXiv:1604.04062.

[6] H. Bombin and M. A. Martin-Delgado, Topological Quan-
tum Distillation, Phys. Rev. Lett. 97, 180501 (2006).

[7] E. Knill, Quantum computing with realistically noisy
devices, Nature (London) 434, 39 (2005).

[8] N. M. Linke, M. Gutierrez, K. A. Landsman, C. Figgatt, S.
Debnath, K. R. Brown, and C. Monroe, Quantum comput-
ing with realistically noisy devices, Sci. Adv. 3, e1701074
(2017).

[9] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow, and
J. M. Gambetta, Experimental Demonstration of Fault-
Tolerant State Preparation with Superconducting Qubits,
Phys. Rev. Lett. 119, 180501 (2017), arXiv:1705.09259.

[10] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey,
T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen
et al., State preservation by repetitive error detection in a
superconducting quantum circuit, Nature (London) 519, 66
(2015), arXiv:1411.7403.

[11] J. R. Wootton and D. Loss, Repetition code of 15 qubits,
Phys. Rev. A 97, 052313 (2018), arXiv:1709.00990.

[12] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas,
B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang et al.,
Extending the lifetime of a quantum bit with error correction
in superconducting circuits, Nature (London) 536, 441
(2016), arXiv:1602.04768.

[13] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E.
Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell
et al., Superconducting quantum circuits at the surface code
threshold for fault tolerance, Nature (London) 508, 500
(2014), arXiv:1402.4848.

[14] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang,
M. H. Devoret, and R. J. Schoelkopf, Implementing a
universal gate set on a logical qubit encoded in an oscillator,
Nat. Commun. 8, 94 (2017).

[15] D. Gottesman, Quantum fault tolerance in small experi-
ments, arXiv:1610.03507.

[16] C. Vuillot, Is error detection helpful on IBM 5Q chips?,
Quantum Inf. Comput. 18, 0949 (2018), arXiv:1705.08957.

[17] D. Willsch, M. Nocon, F. Jin, H. De Raedt, and K.
Michielsen, Testing quantum fault tolerance on small
systems, Phys. Rev. A 98, 052348 (2018), arXiv:1805
.05227.

[18] J. Emerson, R. Alicki, and K. Życzkowski, Scalable noise
estimation with random unitary operators, J. Opt. B 7, S347
(2005).

[19] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B.
Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin,
and D. J. Wineland, Randomized benchmarking of quantum
gates, Phys. Rev. A 77, 012307 (2008).

[20] J. Combes, C. Granade, C. Ferrie, and S. T. Flammia,
Logical randomized benchmarking, arXiv:1702.03688.

[21] J. J. Wallman, Randomized benchmarking with gate-
dependent noise, Quantum 2, 47 (2018).

[22] S. T. Merkel, E. J. Pritchett, and B. H. Fong, Randomized
benchmarking as convolution: Fourier analysis of gate
dependent errors, arXiv:1804.05951.

[23] A. Carignan-Dugas, K. Boone, J. J. Wallman, and J.
Emerson, From randomized benchmarking experiments to
gate-set circuit fidelity: How to interpret randomized bench-
marking decay parameters, New J. Phys. 20, 092001 (2018).

[24] P. W. Shor, Scheme for reducing decoherence in quantum
computer memory, Phys. Rev. A 52, R2493 (1995).

[25] D. Bacon, Operator quantum error-correcting subsystems
for self-correcting quantum memories, Phys. Rev. A 73,
012340 (2006).

[26] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.080504 for imple-
mentation and data analysis details, which includes
Refs. [27,28].

[27] A.W. Cross, L. S. Bishop, J. A. Smolin, and J. M.
Gambetta, Open quantum assembly language, arXiv:1707
.03429.

[28] R. Cleve, D. Leung, L. Liu, and C. Wang, Near-linear
constructions of exact unitary 2-designs, Quantum Inf.
Comput. 16, 0721 (2016), arXiv:1501.04592.

[29] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact and
approximate unitary 2-designs and their application to
fidelity estimation, Phys. Rev. A 80, 012304 (2009).

[30] D. Gross, K. Audenaert, and J. Eisert, Evenly distributed
unitaries: On the structure of unitary designs, J. Math. Phys.
(N.Y.) 48, 052104 (2007).

[31] W. G. Brown and B. Eastin, Randomized benchmarking
with restricted gate sets, Phys. Rev. A 97, 062323 (2018),
arXiv:1801.04042.

[32] A. K. Hashagen, S. T. Flammia, D. Gross, and J. J. Wallman,
Real randomized benchmarking, Quantum 2, 85 (2018).

[33] A. Carignan-Dugas, J. J. Wallman, and J. Emerson, Char-
acterizing universal gate sets via dihedral benchmarking,
Phys. Rev. A 92, 060302 (2015), .

[34] J. T. Muhonen, A. Laucht, S. Simmons, J. P. Dehollain, R.
Kalra, F. E. Hudson, S. Freer, K. M. Itoh, D. N. Jamieson,
J. C. McCallum et al., Quantifying the quantum gate fidelity
of single-atom spin qubits in silicon by randomized bench-
marking., J. Phys. Condens. Matter 27, 154205 (2015).

[35] M. A. Fogarty, M. Veldhorst, R. Harper, C. H. Yang, S. D.
Bartlett, S. T. Flammia, and A. S. Dzurak, Nonexponential
fidelity decay in randomized benchmarking with low-
frequency noise, Phys. Rev. A 92, 022326 (2015), arXiv:
1502.05119v2.

[36] R. Harper, I. Hincks, C. Ferrie, S. T. Flammia, and J. J.
Wallman, Statistical analysis of randomized benchmarking,
arXiv:1901.00535.

PHYSICAL REVIEW LETTERS 122, 080504 (2019)

080504-5

http://arXiv.org/abs/1804.03719
http://arXiv.org/abs/1710.03615
http://arXiv.org/abs/1710.03615
https://doi.org/10.1038/s41534-017-0017-3
https://doi.org/10.1088/1367-2630/13/5/053039
http://arXiv.org/abs/1011.1942
http://arXiv.org/abs/1604.04062
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1038/nature03350
https://doi.org/10.1126/sciadv.1701074
https://doi.org/10.1126/sciadv.1701074
https://doi.org/10.1103/PhysRevLett.119.180501
http://arXiv.org/abs/1705.09259
https://doi.org/10.1038/nature14270
http://arXiv.org/abs/1411.7403
https://doi.org/10.1103/PhysRevA.97.052313
http://arXiv.org/abs/1709.00990
https://doi.org/10.1038/nature18949
http://arXiv.org/abs/1602.04768
https://doi.org/10.1038/nature13171
http://arXiv.org/abs/1402.4848
https://doi.org/10.1038/s41467-017-00045-1
http://arXiv.org/abs/1610.03507
http://arXiv.org/abs/1705.08957
https://doi.org/10.1103/PhysRevA.98.052348
http://arXiv.org/abs/1805.05227
http://arXiv.org/abs/1805.05227
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1103/PhysRevA.77.012307
http://arXiv.org/abs/1702.03688
https://doi.org/10.22331/q-2018-01-29-47
http://arXiv.org/abs/1804.05951
https://doi.org/10.1088/1367-2630/aadcc7
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.73.012340
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.080504
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.080504
http://arXiv.org/abs/1707.03429
http://arXiv.org/abs/1707.03429
http://arXiv.org/abs/1501.04592
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1063/1.2716992
https://doi.org/10.1063/1.2716992
https://doi.org/10.1103/PhysRevA.97.062323
http://arXiv.org/abs/1801.04042
https://doi.org/10.22331/q-2018-08-22-85
https://doi.org/10.1103/PhysRevA.92.060302
https://doi.org/10.1088/0953-8984/27/15/154205
https://doi.org/10.1103/PhysRevA.92.022326
http://arXiv.org/abs/1502.05119v2
http://arXiv.org/abs/1502.05119v2
http://arXiv.org/abs/1901.00535


[37] D. Nigg, M. Muller, E. A. Martinez, P. Schindler, M.
Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt,
Quantum computations on a topologically encoded qubit,
Science 345, 302 (2014), arXiv:1403.5426.

[38] A. Robertson, C. Granade, S. D. Bartlett, and S. T. Flammia,
Tailored Codes for Small Quantum Memories, Phys. Rev.
Applied 8, 064004 (2017), arXiv:1703.08179.

[39] E. Huang, A. C. Doherty, and S. Flammia, Performance of
quantum error correction with coherent errors, arXiv:
1805.08227 [Phys. Rev. A (to be published)].

[40] S. Beale, J. Wallman, M. Gutiérrez, K. R. Brown, and
R. Laflamme, Quantum Error Correction Decoheres
Noise, Phys. Rev. Lett. 121, 190501 (2018), arXiv:1805
.08802.

PHYSICAL REVIEW LETTERS 122, 080504 (2019)

080504-6

https://doi.org/10.1126/science.1253742
http://arXiv.org/abs/1403.5426
https://doi.org/10.1103/PhysRevApplied.8.064004
https://doi.org/10.1103/PhysRevApplied.8.064004
http://arXiv.org/abs/1703.08179
http://arXiv.org/abs/1805.08227
http://arXiv.org/abs/1805.08227
https://doi.org/10.1103/PhysRevLett.121.190501
http://arXiv.org/abs/1805.08802
http://arXiv.org/abs/1805.08802

