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2B. I. Stepanov Institute of Physics, NASB, Nezavisimosti Avenue 68, Minsk 220072, Belarus
3Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
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We introduce a new distance-based measure for the nonclassicality of the states of a bosonic field, which
outperforms the existing such measures in several ways. We define for that purpose the operator ordering
sensitivity of the state which evaluates the sensitivity to operator ordering of the Renyi entropy of its
quasiprobabilities and which measures the oscillations in its Wigner function. Through a sharp control on
the operator ordering sensitivity of classical states we obtain a precise geometric image of their location in
the density matrix space allowing us to introduce a distance-based measure of nonclassicality. We analyze
the link between this nonclassicality measure and a recently introduced quantum macroscopicity measure,
showing how the two notions are distinct.
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Introduction.—Questions arising in quantum informa-
tion theory and quantum chaos drive continued interest in
the exploration of the quantum-classical boundary. There is
in this context a need to effectively determine the strength
of the diverse nonclassical features of quantum states: their
Titulaer-Glauber nonclassicality [1–23], their degree of
coherence and macroscopic nature [24–35], their degree
of entanglement, their entanglement potential [14,20], their
semiclassical breaking times in quantum chaos [36,37], and
the links between these notions. In this Letter, we inves-
tigate the nonclassicality of bosonic quantum field states.
The established definition of a Titulaer-Glauber classical
state in this context is that it is a statistical mixture of
coherent states, or equivalently, that its Glauber-Sudarshan
P function defines a probability on phase space [1].
Otherwise, it is nonclassical. In this Letter, the term
“nonclassical” will always have this precise sense. The
two main issues in this respect are the identification of
nonclassicality witnesses that establish if a given state is
nonclassical and the definition of quantitative measures of
nonclassicality, that say how nonclassical a state is.
Indeed, for many states the P function is neither

theoretically, nor experimentally readily accessible.
Consequently, to test for nonclassicality, various sufficient
and more easily verified criteria have been designed. Some
generalize the well-known quantum optics criteria such as
the negativity of the Mandel parameter and of the degree of
squeezing [7,12,18]. Others involve the negativity of the
Wigner function [6,9,13], the entanglement potential of the
state [14], or the minimal number of coherent states
allowing us to write it as a superposition ([20,22], and
references therein). While they capture various aspects
of nonclassicality, they do not furnish a nonclassicality

measure. An alternative approach uses a distance between a
given state and the set C of all classical states as non-
classicality measure. This idea was pursued using the trace
norm [3,4,21], the Hilbert-Schmidt norm [10], and the
Bures distance [11]. It has been argued, however, that the
resulting nonclassicality measure depends on the arbitrari-
ness in the choice of norm [19]. Also, computing or
estimating these distances has been possible only in a
few cases [14,21,22].
We propose a distance-based measure of nonclassicality

avoiding those drawbacks. We construct a specifically
adapted Hilbert norm on the density operators, whose
square we refer to as the “operator ordering sensitivity”
(OS) of the state ρ [see Eqs. (6) and (9)]. It measures the
sensitivity of the Renyi entropy of its quasiprobability
distributions to operator ordering, an eminently nonclass-
ical notion. We show OS provides a simple and efficient
sufficient condition for nonclassicality [see (6)] that is also
necessary for pure states. Furthermore, as the square of a
norm, the OS induces a distanceN ðρÞ from ρ to the set C of
all classical states that we propose as a new measure of
nonclassicality [see (10)].
We establish that the OS of ρ yields a good approxi-

mation of the nonclassicality distanceN ðρÞ, that it captures
the intuitive physical ideas underlying nonclassicality well,
and that it can often be more easily determined than
existing criteria.
Another feature of the quantum-classical boundary is

“quantum macroscopicity” which, loosely speaking, eval-
uates the degree to which a quantum state is the super-
position of macroscopically distinct states. Various
measures of quantum macroscopicity have been proposed
[24–27,31–34]. We will compare a proposal based on the
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quantum Fisher information to the nonclassicality measure
N ðρÞ and explain their relation.
Ordering sensitivity: A nonclassicality witness.—For

ease of notation, we shall concentrate on one-dimensional
systems, characterized by an annihilation-creation operator
pair a, a†. We introduce the s-ordered quasiprobabilities
WsðαÞ of a state with density matrix ρ [38,39]. Let

χsðξÞ ¼ exp

�
s
jξj2
2

�
χ0ðξÞ; χ0ðξÞ ¼ TrρDðξÞ;

where DðξÞ ¼ expðξa† − ξ�aÞ. Then

WsðαÞ ¼
1

π2

Z
χsðξÞ expðξ�α − ξα�Þd2ξ; ð1Þ

W0ðαÞ is the Wigner function of ρ, W1ðαÞ its Glauber-
Sudarshan P function, W−1ðαÞ its Husimi function and
χsðξÞ is the characteristic function of WsðαÞ and

∂sWsðαÞ ¼ −
1

8
ΔαWsðαÞ: ð2Þ

Here, α ¼ α1 þ iα2 ∈ C and Δα ¼ ∂2
α1 þ ∂2

α2 . There
exists xðρÞ ≥ 0 so that, for all s < xðρÞ, Ws is
analytical and square integrable, meaning that
kWsk22 ≔

R jWsj2ðαÞd2α < þ∞; W0ðρÞ is always square
integrable [38–40]. Since Trρ ¼ 1, one has, for all
s < xðρÞ, R WsðαÞd2α ¼ 1, which, together with the fact
that WsðαÞ is real valued but not necessarily nonnegative,
explains the term “quasiprobability distribution.”
Following [1,2,41], we say a quantum state with density

matrix ρ is classical when its P function is a probability on
the phase space C, which implies xðρÞ ≥ 1. Below, we first
establish a sufficient condition for a state ρ to be non-
classical based on its ordering sensitivity SoðρÞ, which
measures the variation in the quasiprobability distributions
WsðαÞ, for s close to 0: see (6).
For that purpose, we introduce the s-ordered entropy:

Hðs; ρÞ ¼ − lnðπkWsk22Þ: ð3Þ

This is well defined for all s so thatWs is square integrable
and hence at least for all −1 ≤ s ≤ 0. This terminology is
motivated by the observation that, when Ws ≥ 0, it defines
a bona fide probability. Hðs; ρÞ is then its (second order)
Renyi entropy, one of many measures of its uncertainty or
unpredictability. A strongly localized probability distribu-
tion corresponds to a low degree of uncertainty and a
strongly negative Renyi entropy. Conversely, a strongly
delocalized probability distribution has a large positive
Renyi entropy. For s ¼ 0, Hð0; ρÞ ¼ − ln Trρ2 ≥ 0 is
directly expressed in terms of the purity P ¼ Trρ2 of ρ.
It reaches its minimal value 0 for pure states. Note that,
from (2) one finds

H0ðs; ρÞ ¼ 1

4

hWs;ΔWsi
kWsk22

¼ −
1

4

k∇Wsk22
kWsk22

≤ 0; ð4Þ

so H decreases with s. This reflects the fact that WsðαÞ
solves the well-studied [42–44] backward or antidiffusion
equation (2) leading to an increase in entropy backward in
the “time” s and a decrease forward in time [45]. One easily
sees H00ðρ; sÞ ≤ 0 so that H is concave.
Our main tool for the characterization of the nonclassi-

cality of quantum states is the following bound on H0.
Theorem.—If ρ is a classical state, then

0 ≤ −ð1 − sÞH0ðs; ρÞ ≤ 1; −1 ≤ s < 1: ð5Þ

The proof [46] relies on (2). The upper bound 1 is sharp,
since one easily checks that, for coherent states,
H0ðs; jαihαjÞ ¼ ðs − 1Þ−1. The lower bound follows from
(4). By evaluating (5) at s ¼ 0, we infer the following
sufficient condition for nonclassicality of ρ:

SoðρÞ ≔ −H0ð0; ρÞ > 1 ⇒ ρ is nonclassical: ð6Þ

We call SoðρÞ the ordering sensitivity (OS) of ρ. It measures
the change in the s-ordered entropy of ρ, and hence the
change in WsðαÞ, as s varies close to s ¼ 0. This terminol-
ogy is justified because different values of s correspond to
different operator orderings in the quantization procedure
[38,39]. The condition SoðρÞ > 1 can hence be paraphrased
by saying that the state ρ is strongly ordering sensitive and
(6) says this implies the state is not classical, in agreement
with “operator ordering” as a typical quantum feature.
A second argument in favor of SoðρÞ as a nonclassicality

probe comes from the observation that ∇W0 probes the
oscillations and short range structures of W0, associated in
particular with interference fringes and with negativity of
W0. Hence (4) implies SoðρÞ measures such features. Since
interference fringes are a hallmark of quantum mechanics,
physical intuition suggests large values of SoðρÞ are
associated to strong quantum features of the state. A
contrario, if ρ is a classical state then, setting s ¼ 0 in
(5) and using (4), one finds SoðρÞ ≤ 1 or k∇W0k22 ≤
ð4=πÞTrρ2. Hence, for classical states, these oscillations
in the Wigner distribution are purity limited. The less pure a
classical state, the smaller they are.
Equation (4) therefore links two quantum phenomena:

the sensitivity of WsðαÞ to the operator ordering parameter
s and the oscillations of WsðαÞ at fixed s. That such
oscillations increase with s has been argued generally in
[38,39] and illustrated on examples in [49,50]. It finds a
quantitative expression in our setting in the fact that
−H00ðs; ρÞ ≥ 0. The quantity k∇W0k2=kW0k2 has been
used previously in quantum chaos studies [36,37] and both
k∇W0k2=kW0k2 and k∇W0k2 have been proposed as
measures of “quantum macroscopicity” [25–27], but their
relevance for that latter purpose has been contested [34]
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(see below for details.) Our results reinterpret
k∇W0k2=kW0k2 as the OS of the state and show it is a
nonclassicality witness. We use it below to construct a
nonclassicality measure.
Third, we consider the behavior of the OS when the

system interacts with a thermal bath with mean photon
number hni. We use a simple input-output model [14,15]
that can alternatively be interpreted as the action of a beam
splitter [51]. The system, initially in the state ρin, ends up in
the state ρout after interaction with the bath, characterized
by an efficiency 0 ≤ λ ≤ 1, where

χout;1ðξÞ ¼ χin;1ð
ffiffiffi
λ

p
ξÞ exp½−ð1 − λÞhnijξj2�:

As a result, with s̄ ¼ 1þ λ−1½ðs − 1Þ − 2ð1 − λÞhni� ≤ 1,

Ws;outðαÞ ¼ λ−1Ws̄;in

�
αffiffiffi
λ

p
�
:

It follows that SoðρoutÞ ¼ −λ−1H0ðs̄; ρinÞ, with s̄ ¼
1 − λ−1ð1þ 2ð1 − λÞhniÞ < 0. Since −H0 is a nondecreas-
ing function of s, this yields SoðρoutÞ ≤ λ−1SoðρinÞ. For λ
close to 1 and hni large enough, this shows that SoðρoutÞ is
lower than or equal to SoðρinÞ. More precisely, in the weak
coupling limit λ → 1 and ð1 − λÞhni → ē, this yields

lim
λ→1

SoðρoutÞ ¼ −H0ð−2ē; ρinÞ ≤ SoðρinÞ:

Since noisy environments destroy the quantal nature of
states, this is again compatible with the interpretation of
SoðρÞ as an indicator of the level of nonclassicality of ρ, a
point further developed below, see Eqs. (10) and (11). In
fact, the above equation shows that, the noisier the
environment (large ē), the more it decreases SoðρÞ and
hence the nonclassicality of the initial state.
A final argument in favor of the pertinence of SoðρÞ as a

nonclassicality probe comes from the analysis of SoðρÞ for
pure states ρ ¼ jψihψ j. In that case, (9) below implies

SoðρÞ ¼ hðQ − hQiÞ2i þ hðP − hPiÞ2i
¼ 2hða† − ha†iÞða − haiÞi þ 1: ð7Þ

Here, Q ¼ ð1= ffiffiffi
2

p Þða† þ aÞ, P ¼ ði= ffiffiffi
2

p Þða† − aÞ. Hence,
for pure states SoðρÞ captures the intuitive idea that they are
strongly nonclassical when they have a large uncertainty.
Indeed, in classical mechanics pure states are points in
phase space displaying no uncertainty, whereas in quantum
mechanics, pure states must have uncertainty, of which
SoðρÞ is a natural measure. The uncertainty principle then
implies SoðρÞ ≥ 1; it is equal to one only if jψi is a coherent
state. Equations (5) and (7) therefore provide an alternative
proof of the known fact that the only pure classical states
are the coherent states [2]. The condition SoðρÞ > 1 is

therefore both necessary and sufficient for the nonclassi-
cality of pure states.
We now show how to use the OS to construct a

nonclassicality measure, extending these ideas to all states.
A new nonclassicality measure.—We first interpret So

geometrically. We define, for two operators A, B

hA; Bi ¼ 1

2
Trð½A†; Q�½Q;B� þ ½A†; P�½P;B�Þ: ð8Þ

This expression is linear in B, antilinear in A, and positive
when B ¼ A. We set jjjAjjj ¼ hA; Ai1=2. If jjjAjjj ¼ 0, one
shows A vanishes [46]. Hence, the above expression

defines an inner product. We write Lð1Þ
HS for the correspond-

ing Hilbert space of operators [46]. One has [36,46]

SoðρÞ ¼ −
1

2

Trð½Q; ρ�2 þ ½P; ρ�2Þ
Trρ2

¼ jjjρ̃jjj2; ð9Þ

where ρ̃ ¼ ρ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðρ2Þ

p
, showing OS is a norm. The map

ρ → ρ̃ is the normalization of ρ for the Hilbert-
Schmidt norm.
We now reformulate (6): ρ ∈ C ⇒ jjjρ̃jjj ≤ 1. In other

words, C̃, which is the image of C under the map ρ → ρ̃, is

contained inside the unit ball of Lð1Þ
HS. Conversely, when ρ̃ is

outside this unit ball, ρ is nonclassical. We define the
distance from ρ to C by dðρ; CÞ ¼ infσ∈Cjjjρ̃ − σ̃jjj and
propose it as a quantitative nonclassicality measure for ρ by
defining the nonclassicality N ðρÞ of ρ via

N ðρÞ ¼ dðρ; CÞ: ð10Þ

Clearly, N ðρÞ > 0 implies ρ nonclassical and ρ classical
implies N ðρÞ ¼ 0 [46].
One could object that, since we have no good under-

standing of the precise shape of C, this distance cannot be
readily computed, as for the distances previously intro-
duced in the literature. However, since C̃ lies inside the unit
ball, and since the OS of classical states can be arbitrarily
small, the triangle inequality for norms implies [46]

jjjρ̃jjj − 1 ≤ N ðρÞ ≤ jjjρ̃jjj: ð11Þ

Hence, if jjjρ̃jjj ≫ 1, then jjjρ̃jjj provides a very good
estimate of N ðρÞ. In addition, (9) expresses SoðρÞ directly
in terms of the density matrix ρ itself, without referring to
its quasiprobabilities WsðαÞ. This, as we will see, is a
distinct advantage in its computation.
Computing the ordering sensitivity: pure states.—One

finds, using (7), that SoðjαihαjÞ ¼ 1, as anticipated
above. For squeezed states jα; zi; z ¼ reiφ, one finds
Soðjα; zihα; zjÞ ¼ coshð2rÞ: increased squeezing leads to
increased nonclassicality. Also, SoðjnihnjÞ ¼ 2nþ 1: the
number states are increasingly far from the set C of classical
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states as n grows, corroborating their increasing nonclassi-
cality. For N-component cat states [51,52], the nonclassi-
cality grows as jαj2 [46]. In contrast, for such states, the
Mandel parameter and the degree of squeezing, aswell as the
method of moments, provide inefficient nonclassicality
witnesses when α is large [46]. The entanglement potential
of the N-component cat states saturates at lnN [14,52] for
large jαj failing to capture the nonclassicality growth with
growing jαj. Similarly, the degree of nonclassicality intro-
duced in [17,22] equals N, independently of α. Finally, our
approach here has essential advantages over the one using
the trace distance δCðρÞ ¼ 1

2
infσ∈CTrðjρ − σjÞ as a measure

of nonclassicality. Indeed, δCðjnihnjÞ tends to its maximal
value 1 as n grows, whereas δCðjψ�ihψ�jÞ saturates at 1=2
for large jαj for the even/odd cat states jψ�i ∝ ðjαi � j − αiÞ
[21]. It is therefore insensitive to their increased phase space
spread. In addition, to the best of our knowledge, sharp
computable estimates such as (11) are not available for
δCðjψihψ jÞ with general jψi. Indeed, (11) provides both
upper and lower bounds on N ðjψihψ jÞ showing it is
equivalent to the right hand side of (7), known as the total
noise [53]. The total noise is easily computable in terms of
hai and ha†ai and is experimentally accessible [5]. While it
is large when δCðjψihψ jÞ is close to its maximal value 1 [5],
the converse is not true as the above examples show.
Computing the ordering sensitivity: Mixed states.—Let

ρ ¼ P
i pijiihij, where hijji ¼ δij. Then hρ̃; ρ̃i ¼ p̃TKp̃,

with, for i ≠ j [46],

Kii ¼ ΔQ2
i þ ΔP2

i ; Kij ¼ −ðjhijQjjij2 þ jhijPjjij2Þ:
ð12Þ

The computation of SoðρÞ is therefore reduced to the
computation of field quadratures in the eigenstates jii of
ρ followed by the analytical or numerical computation of a
matrix element of K. In comparison, the computation of the
trace, Hilbert-Schmidt, or Bures distances has not been
achieved for mixed states. Also, the determination of the
Mandel parameter and a fortiori the use of the moment
method, require the computation of higher moments in a,
a† [46]. From (12) it follows SoðρÞ is less than the weighted
average

P
i p̃

2
i ðΔQ2

i þ ΔP2
i Þ of the ordering sensitivities of

the eigenstates jii. This bound can be reached. For
example, when the jii are the number states jni, one has
Knn ¼ 2nþ 1 and Knnþ1 ¼ −ðnþ 1Þ. For ρeven ¼P

n p2nj2nih2nj this gives
SoðρevenÞ ¼

X
n

p̃2
2nðΔQ2

2n þ ΔP2
2nÞ ¼ 1þ 4

X
n

p̃2
2nn:

When p0 ¼ 0, p2 ¼ � � � ¼ p2M ¼ 1=M, this yields
Soðρeven;MÞ ¼ 1þ 2ðM þ 1Þ. These states are therefore
increasingly nonclassical as M grows and show strong
oscillations in their Wigner function. For ρM ¼
M−1PM

n¼1 jnihnj [22,25], on the contrary, SoðρMÞ ¼
1þ 2 M−1. The ρM are only weakly nonclassical: they

remain at a distance at most 1þM−1 from C and their
Wigner function shows only small fluctuations (Fig. 1). On
the other hand, the Mandel parameter grows for both
ρeven;M and ρM as M, failing to detect their nonclassicality
for large M. Also, although these two states are very
different, the degree of nonclassicality introduced in
[17,22] is 2M for both and does not distinguish them.
Similar computations allow us to determine the ordering
sensitivity of a mixture of a thermal and a Fock state jmi
[25], which is strongly nonclassical for large m, as well as
for truncated thermal states [6] and for (single) photon
added thermal [7,16] states, which are found to be weakly
nonclassical.
Nonclassicality versus quantum macroscopicity.—In

contrast to the “nonclassicality” of a state, there is no
generally agreed upon definition of its quantum macro-
scopicity, a property for which a variety of measures have
been proposed recently [24–26,28,31–34]. One such mea-
sure [33,34] uses the quantum Fisher information F ðρ; QθÞ
[54] of the quadratures Qθ ¼ Q cos θ þ P sin θ:

MQFIðρÞ ¼
1

4
max
θ

F ðρ; QθÞ:

We show in the Supplemental Material [46] that

MQFIðρÞ >
1

2
⇒ ρ nonclassical; ð13Þ

proving thatMQFI is a nonclassicality witness, as is So. It is
natural to ask how MQFI and So are related. One may
notice that on many states they behave similarly. Indeed, on
thermal states and on ρM (defined above), So ¼ 2MQFI, so
that they coincide except for normalization [46]. The two
can also be very different. For example, MQFI is a less

FIG. 1. Plots of the Wigner functions of ρ2M (solid line) and
of ρeven;M (dashed line) as a function of jαj for M ¼ 10. Both
states have comparable photon number: Trðρ2Ma†aÞ ¼ M þ 1

2
,

Trðρeven;Ma†aÞ ¼ M þ 1. The oscillations in the Wigner function
of one are visibly much more pronounced than in the other, as
detailed in the text.

PHYSICAL REVIEW LETTERS 122, 080402 (2019)

080402-4



efficient nonclassicality witness than So for truncated
vacuum states, while it is more efficient than So for
squeezed thermal states [46,55]. However, and more
importantly, a large MQFI does not imply a large N ,
as the example ρk ¼ ½1 − ðM�=kÞ�j0ih0j þ ðM�=kÞjkihkj
shows: MQFIðρkÞ ¼ 1

2
þM�, N ðρkÞ → 0 when k ≫ 1.

So, when M� is large, MQFI is large, while N remains
small [46]. Consequently, if MQFI does indeed correctly
capture the idea of quantum macroscopicity, as proposed in
[33,34], then large quantum macroscopicity does not imply
large Glauber-Titulaer nonclassicality. This would seem
to indicate that, even for a single mode, MQFI captures
“macroscopic” and/or “quantum” features of such states
that are different from the nonclassicality associated with a
nonpositive Sudarshan-Glauber P function and revealed by
their OS. What these features are, remains unclear.
Conclusions.—We have constructed a new nonclassical-

ity measure N ðρÞ for the states of a single-mode boson
field. N ðρÞ is a distance to the set C of classical states,
defined in terms of the ordering sensitivity (OS) of the state,
a new entropic notion that evaluates the sensitivity of the
state to operator ordering. We have proven that all classical
states have an OS less than or equal to one and that, when
the OS of a density matrix is large, it provides a good
approximation of N ðρÞ. The OS is easily computable in
terms of field quadratures, captures several intuitive fea-
tures of nonclassicality naturally, and detects in many cases
nonclassicality more efficiently than previously known
indicators. We have finally compared the nonclassicality
N ðρÞ to a recent proposal for the measure of quantum
macroscopicity based on the quantum Fisher information.
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