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We analyze the “higher rank” gauge theories that capture some of the phenomenology of the fracton
order. It is shown that these theories lose gauge invariance when an arbitrarily weak and smooth curvature is
introduced. We propose a resolution to this problem by introducing a theory invariant under area-preserving
diffeomorphisms, which reduce to the higher rank gauge transformations upon linearization around a flat
background. The proposed theory is geometric in nature and is interpreted as a theory of chiral topological
elasticity. This theory exhibits some of the fracton phenomenology. We explore the conservation laws,
topological excitations, linear response, various kinematical constraints, and canonical structure of the
theory. Finally, we emphasize that the very structure of Riemann-Cartan geometry, which we use to
formulate the theory, encodes some of the fracton phenomenology, suggesting that the fracton order itself is
geometric in nature.
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Introduction.—A new exciting type of order, dubbed
fracton order, was recently introduced [1–5], and has
attracted a lot of attention [6–12]. Particles with restricted
mobility, fractal operators, and unusual ground state
degeneracy are among the exotic features of the fracton
models. These models appear to remain gapped in the
thermodynamic limit and support a subextensive number
of ground states. It was argued that some of the fracton
phenomenology is captured by the (gapless) effective
“higher rank” gauge theories (introduced in Ref. [13])
[6], where the degrees of freedom (d.o.f.) are higher rank
gauge fields. The Gauss law constraints in these models led
to the particles with restricted mobility. A particularly
simple set of (chiral) models was introduced in two spatial
dimensions [8,14], although the construction of a micro-
scopic model realizing these chiral phases remains an open
problem. Symmetric tensor d.o.f. have also recently
appeared in quantum Hall physics [15–19].
In this Letter we critically revisit the higher rank gauge

theories. We start by showing that higher rank gauge
symmetry breaks down in a weakly curved space. We
interpret this fact as a fundamental inconsistency of these
theories as theories with an internal gauge symmetry group.
We propose a resolution of this inconsistency by interpret-
ing the higher rank gauge symmetry as a spatial symmetry
under area-preserving diffeomorphisms. Armed with this
interpretation we construct a covariant theory that reduces
to the two-dimensional higher rank models upon lineari-
zation around the flat background.
We interpret the proposed effective theory as a theory of

chiral topological elasticity. This theory is topological in
that it does not require ambient metric to define the classical
Lagrangian on an arbitrary manifold, but its symmetry
group is geometric in nature, as it is related to spatial

translations. The effective theory describes the quantum
elastic medium formed on top of a classical lattice. The
excitations in the medium are quantum dislocations with the
Burgers vector that can be a fraction of the lattice vector of
the classical lattice. The dislocations satisfy a (nonlinear)
glide constraint and move along one-dimensional submani-
folds. Glide constraint follows from the (nonlinear) “vol-
ume” conservation law. The disclinations are high energy
immobile excitations that can only move by creating dis-
locations along theway [20]. Relation between fracton order
and elasticity was very recently discussed in Ref. [21].
Higher rank gauge theory.—We start with a brief review

of the effective theory for the 2D chiral fracton order
proposed in Refs. [8,14]. The d.o.f. are described by a
rank-2, symmetric, traceless gauge field aij, and a scalar
Lagrange multiplier χ. The action is given by [8,14]

S2 ¼
k
4π

Z
dtd2xð2χϵij∂i∂kajk − ϵijaik∂0ajkÞ; ð1Þ

where i; j;… ¼ 1, 2. The action (1) is invariant under the
gauge transformations

δaij ¼
�
∂i∂j −

1

2
δijΔ

�
α; δχ ¼ _α; ð2Þ

where α is the scalar gauge parameter.
We would like to show that the higher rank gauge theory

becomes inconsistent in a weakly curved space. We will
assume that aij is a true rank-2 tensor [22]. A rank-2 tensor
is a two-index object that transforms under a coordinate
change xi → xi þ ξiðxÞ as follows:

δaij ¼ ξk∂kaij þ aik∂jξ
k þ ajk∂iξ

k: ð3Þ
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Clearly, Eq. (1) is not invariant under Eq. (3). To restore
the invariance one has to replace all partial derivatives
by the covariant derivatives∇i, and contract all indices with
the ambient metric gij. For the action (1) we obtain

S2 ¼
k
4π

Z
dtd2x

ffiffiffi
g

p ð2χϵijglk∇i∇kajl − ϵijglkaik∂0ajlÞ:

ð4Þ
This action must be supplemented with the covariant form
of the gauge transformation δaij ¼ ½∇i∇j − 1

2
gij∇i∇j�α.

Under a time-independent gauge transformation the second
term in Eq. (4) is invariant, while the first term is not

δS2 ∼
Z

dtd2x
ffiffiffi
g

p
αϵijð∇iRÞð∇jχÞ ≠ 0; ð5Þ

where R is the Ricci curvature. To derive Eq. (5) we have
used the definition of the Riemann tensor ½∇i;∇j�vk ¼
Rk

lijvl and the following explicit 2D formula [23] Rijkl ¼
ðR=2Þðgikgjl − gilgjkÞ. Since the integral in Eq. (5) does not
generally vanish, we conclude that the higher rank gauge
symmetry is broken in curved space [24]. Equation (5)
is the first central result of this Letter [25]. The present
argument holds true in any dimension and for the
Lagrangians that include a Maxwell-type term. This
follows from the fact that gauge symmetry is ensured by
the commutativity of the partial derivatives in flat space,
which certainly breaks down in curved space. In what
follows we show that it is possible to circumvent this issue
by abandoning the higher rank gauge theory interpretation
of Eqs. (1)–(2).
Area-preserving diffeomorphisms.—We would like to

construct an effective theory that has some version of
Eq. (2) as a symmetry, and is well defined on an arbitrary
manifold. First, we will formulate the theory and then prove
that it reduces to Eqs. (1)–(2) in a particular limit.
The d.o.f. will be described by the vielbein field êAμ

[23,26], where A ¼ 1, 2, μ ¼ 0, 1, 2. The action is given by

SCTE¼
k
4π

δAB

Z
d3xϵμνρêAμ T̂

B
νρ≡ k

4π
δAB

Z
êA ∧ T̂B; ð6Þ

where T̂A
νρ is the torsion 2-form [23,26]. The vielbeins êAμ

describe emergent d.o.f. and not the geometry of ambient
space [27].
Under the coordinate change vielbeins transform as

δêAμ ¼ ξν∂νêAμ þ êAν ∂μξ
ν: ð7Þ

The action (6) is invariant under these transformations.
We now show that Eqs. (6)–(7) reduce to Eqs. (1)–(2).

Consider the vielbeins of the form

êAμ ¼ δAμ þ ðϵAB∂Bχ;−ϵABδBiaijÞ; ð8Þ

where χ, aij should be viewed as small fluctuations around
δAμ . We are going to impose a constraint on Eq. (7) by
requiring that determinant of the vielbein ê is preserved
δê ¼ 0. This type of transformation is called an area-
preserving diffeomorphism (APD). It satisfies

∂iξ
i ¼ 0 ⇒ ξi ¼ ϵij∂jα: ð9Þ

Under the APDs we find the transformation laws (2). In
terms of the variables ðχ; aijÞ Eq. (6) reduces to Eq. (1).
What did we accomplish? We have constructed a

topological theory, that is well defined on an arbitrary
manifold and that reduces to Eqs. (1)–(2) upon linearization
around a particular background. The “gauge transforma-
tions” were identified with the subgroup of the diffeo-
morphisms that preserve the volume element ê. There is no
internal gauge symmetry in the problem [28]. The action
(6) is topological in that it is independent of the metric of
the ambient space [29].
Chiral topological elasticity.—We will argue that the

theory (6) is a quantum theory of elasticity with fraction-
alized excitations for k > 1. We take inspiration from the
geometric formulation of elasticity and defects [30–35].
The simplest such formulation involves teleparallel [36,37]
geometry, i.e., curvature-free geometry with torsion. The
geometric objects involved are the vielbeins êAμ and the
torsion 2-form T̂A. The two are related by the Cartan
structure equation [23,26]

dêA ¼ T̂A ⇒ SCTE ¼ k
4π

δAB

Z
êA ∧ dêB: ð10Þ

The classical phase space is spanned by the torsionless
vielbeins satisfying ϵij∂iêAj ¼ ϵijT̂A

ij ¼ 0. The term (6) can
be generated by coupling a chiral matter (such as massive
Dirac fermion) to the torsional geometry [38,39] and then
allowing the geometry to fluctuate. The action (6), with
k ¼ 1, appears to capture the essential features of the
topological mechanics discussed in Ref. [40].
To get further insight into the theory (10) we turn on the

background geometry, described by another set of viel-
beins, eAμ (no “hat”). The action takes form

SCTE ¼ k
4π

δAB

Z
êA ∧ dêB −

1

2π
δAB

Z
eA ∧ dêB: ð11Þ

This theory is invariant under the diffeomorphisms per-
formed on êA and eA simultaneously.
Invariance of the action under the general diffeomor-

phisms implies a local (flat space) momentum conservation
law

∂μσ
μ
A ¼ 0; σμA ¼

1

2e
δS
δeAμ

; ð12Þ
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where σ0A ¼ PA is identified with momentum density and
σiA is the momentum current and e ¼ det eAi . We can switch
between the A;B;… and i; j;… indices using the ambient
(flat) vielbeins eAi ¼ δAi . The existence of the identification
between the internal indices A and manifold indices i is the
fundamental difference between the present theory and the
usual Chern-Simons theory with internal gauge group.
From now on we will freely switch between the indices
using Pi ¼ δAi PA, σij ¼ δAj σ

i
A, etc.

When restricted to area-preserving diffeomorphisms the
conservation law becomes

ϵAB∂A∂μσ
μ
B ¼ 0 ⇔ ϵAB∂A

_PB þ ϵAB∂A∂jσ
j
B ¼ 0: ð13Þ

Upon linearization this can be rewritten as a conservation
for a “density” ϱ (cf. Ref. [6]) [41]

_ϱþ ∂i∂jJij ¼ 0; ð14Þ
where we have defined

ϱ ¼ ϵij∂iPj; Jij ¼ 1

2
½σikϵkj þ σjkϵ

ki�: ð15Þ

Some of the fracton phenomenology, as discussed in
Ref. [6], follows from this conservation law. For example,
the “dipole moment” Di,

Di ¼
Z

d2xxiϱ ¼
Z

d2xxiϵkj∂jPk ¼
Z

d2xϵijPj ð16Þ

is conserved. The local dipole moment di ¼ ϵi
jPj is

perpendicular to the momentum: the dipoles always move
perpendicular to their dipole moment.
Operator content.—Differentiating the action (11) with

respect to eAμ we find the momentum and momentum
current operators (recall that êAμ are dynamical)

σμA ¼ 1

2π
ϵμνρ∂νêA;ρ; ∂μσ

μ
A ≡ 0: ð17Þ

Note that the current σμA is conserved identically. Note that
Eq. (17) can be viewed as the starting point for an elastic
version of the particle-vortex duality. Indeed, in the absence
of external forces any translationally invariant theory,
including elasticity, must satisfy the momentum conserva-
tion law (12). Momentum conservation can be solved
exactly by Eq. (17). The “gauge” freedom in choosing
the solution of Eq. (12) is formally identical to the local
translation invariance [42] that appears in the gauge
approach to elasticity (see Refs. [33–35]).
Consider a background with a singular configuration of

torsion, i.e., a dislocation at position x ¼ aðtÞ with Burgers
vector bA [32]. Then, by the equations of motion,

T̂A ¼ 1

k
bAδðx − aÞ: ð18Þ

The momentum and momentum current localized on a
dislocation are

PA ¼ bA
2πk

δðx − aÞ; σiA ¼ bA
2πk

_aiδðx − aÞ: ð19Þ

In the absence of disclinations the momentum current σiA
has the meaning of a dislocation current. The momentum
density PA is proportional to the Burgers vector of the
background dislocation, but is only a fraction by the
magnitude. The smallest possible Burgers vector is deter-
mined by the primitive lattice vector of the underlying
lattice. The theory (11) can be visualized as a fluctuating
quantum lattice, described geometrically in terms of êAμ ,
that is formed in a quantum system with the underlying
classical “ion” lattice, described geometrically by the
classical sources eAμ . We can probe the quantum elastic
system by distorting the classical lattice (see Fig. 1).
Glide constraint.—Fracton phases, as well as the present

theory of topological elasticity, exhibit excitations with
restricted mobility. In the classical elasticity theory this
phenomenon is referred to as the glide constraint [43,44]—
a dislocation can only move (or glide) in the direction of
their Burgers vector. The motion perpendicular to the
Burgers vector (or climb) requires adding an interstitial
or a vacancy. At low temperatures, the density of inter-
stitials is very low and climb is prohibited. The present
theory also satisfies the glide constraint. To see it we take
the inspiration from Refs. [44,45] and define the transverse
dislocation current

σ⊥ ¼ ϵABêBi σ
i
A ¼ −

1

π

�
1

2
ð∂0êÞ − ϵABϵ

ijêBi ∂jêA0

�
; ð20Þ

which has the meaning of the dislocation current
perpendicular to the Burgers vector. In the notations of

FIG. 1. Chiral topological elastic medium êAμ can be visualized
on top of a classical lattice that is used to probe the system, eAμ .
Here the classical background lattice is drawn with solid lines,
while the quantum lattice is dashed. The lattice constant of the
quantum lattice is twice smaller than the one of the background,
corresponding to k ¼ 2. Dislocations of a quantum lattice carry a
fractional (in the units of primitive lattice vectors of the classical
lattice) Burgers vector. When k ¼ 1 two lattices coincide.
Another possibility (for k ¼ 1) is that the background lattice is
actually the dual lattice [40]. If k is not an integer then the two
lattices are incommensurate.
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Eq. (19) σ⊥ ∝ bAϵAB _aB ¼ b × _a. The total mass (or, total
number of lattice sites) is defined as the total volume
M ¼ R

d2xê of the quantum elastic medium [32]. In the
absence of mobile interstitials or vacancies the local
volume should be conserved. Such conservation is pre-
cisely the expression in square brackets in Eq. (20) [46], but
then σ⊥ ¼ 0. Thus local, nonlinear conservation of mass
(or volume) implies that dislocations can only move along
their Burgers vectors. This constraint reduces to a similar
relationship discussed in the elasticity literature [43,44]
upon linearization.
Disclinations, curvature and fractons.—From the point

of view of elasticity theory the disclinations are very high
energy defects since they require a removal (or addition) of
a macroscopic amount of material. These defects are
described by the singular configuration of the (dynamic)
curvature R̂, which can be described by the torsion alone by
the virtue of Cartan structure equations

T̂A ¼ dêA þ ϵABω̂ ∧ êB: ð21Þ
These equations should be viewed as the definition of the
spin connection ω̂μ, given the vielbeins and torsion [47,48].
Then the conservation of momentum current, ∂μσ

μ
A ≡ 0,

leads to a relation between the curvature and torsion,
known as the Bianchi identity. This relationship becomes
physically transparent when we define the current of
dislocations and disclinations according to

JμA ¼ ϵμνρT̂A;νρ; Θμ ¼ ϵμνρR̂νρ; ð22Þ

where R̂μν ¼ 2ð∂μω̂ν − ∂νω̂μÞ is the curvature 2-form.
Then the Bianchi identity takes form

∇μJ
μ
A ¼ ϵABêBρΘρ; ð23Þ

where ∇μJ
μ
A ¼ ∂μJ

μ
A − ω̂μϵ

B
AJ

μ
B is the covariant diver-

gence. Equation (23) is a nonlinear, covariant generaliza-
tion of the usual relation between dislocations and
disclinations: it tells us that disclination current, Θi, must
be accompanied by creation of dislocations with Burgers
vector perpendicular to Θi.
It turns out that the density of dislocations and discli-

nations are related. Consider a purely spatial 2D version of
Eq. (21). One possible choice of the spin connection,
known as the Levi-Civita connection, is the one that cor-
responds to the vanishing torsion. We denote it as ω̂LC

i . The
general connection can be written as ω̂i ¼ ω̂LC

i þ Ĉi, where
Ĉi ¼ ϵijϵ

A
Be

j
AT̂

B is the contorsion [38]. We now specify to
the teleparallel (curvature-free) case ω̂i ≡ 0. Then

ω̂LC
i ¼ ϵijϵA

BejBT̂
A ⇒ 2R̂LC ¼ ∂iðϵABêiAT̂BÞ; ð24Þ

where R̂LC is the curvature of ω̂LC. Mathematical conse-
quence of Eq. (24) is the equivalence between curvature-free

and torsion-free descriptions of the 2D geometry [49]. In
particular, Gauss-Bonnet theorem can be phrased in terms of
either curvature or torsion. Physical consequence of this
relation is the identification of a disclination dipole with a
dislocation, whose Burgers vector is perpendicular to the
dipole. The glide constraint then implies that the disclination
dipole can only move perpendicular to its dipole moment.
These relations are another piece of the fracton phenom-
enology: disclinations are immobile excitations, that can
only move by exchanging the dislocations. The latter can be
regarded as disclination dipoles.
An important comment is in order: regardless of the rela-

tion to elasticity, the nonlinear identities of the Riemann-
Cartan geometry [or the gauge theory of R2 ⋊ SOð2Þ]
contain some of the phenomenology of the fracton order.
This suggests that the fracton order itself may be of
geometric origin.
Linear response.—Integrating out the quantum fields êAμ ,

and neglecting the global issues, we find the generating
functional and momentum current response to the time-
dependent variation of background geometry

W½eAμ � ¼
δAB
4πk

Z
eA ∧ deB ⇒ hσiAi¼

1

2πk
ϵij∂0eA;j: ð25Þ

This response is known as “torsional Hall viscosity,”
studied for Chern insulators [38,50–52], and is identical
to the “generalized” Hall response of Ref. [14] upon
linearization. There is an important difference from the
traditional electromagnetic Hall response. The generating
functional W½eAμ � is locally invariant (i.e., does not trans-
form by a total derivative) under all symmetries of the
problem. Thus, if we were to introduce a boundary, it will
not require a “compensating” anomalous gapless d.o.f.
[53]. Consequently, we do not expect a robust edge mode.
This conclusion does not immediately contradict the
(opposite) results discussed in Ref. [14]. It is possible that
some microscopic models, with a particular choice of
boundary conditions will support gapless edge modes.
Conclusions.—We have found that the higher rank gauge

theories are no longer gauge invariant if arbitrarily small
and smooth curvature is introduced. We have proposed an
alternative effective theory that does not suffer such a
problem because it does not possess a gauge “symmetry.”
This theory describes chiral topological elasticity and
exhibits the phenomenology of the fracton models. The
realm of topological (or global) properties of the (chiral)
quantum elasticity appears to be largely, if not completely,
unexplored. It would be very interesting to develop the
canonical quantization of the topological elasticity on a
torus, understand the relationship to the gauge theory of
translations, derive the subextensive ground state degen-
eracy, directly show the instability of the edge modes and
identify the fractal operators present in some fracton
models [1,2].
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Note added.—When the present Letter was in preparation I
learned about Ref. [21], where the relation of fracton
models to the elasticity was discussed and identification
of lattice defects with fractons was made. We have also
become aware of Ref. [55], where the geometric nature of
the fracton order was emphasized through a different line of
reasoning.
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