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High-field terahertz (THz) spectroscopy is enabling the ultrafast study and control of matter in new and
exciting ways. However, when intense electromagnetic pulses are used in any kind of pump-probe
spectroscopy, several nonlinear excitation pathways can result, leading to scenarios that required the
development of multidimensional spectroscopies to illuminate the observed dynamics. Here we
demonstrate a clear example where two-dimensional (2D) THz vibrational spectroscopy is needed to
distinguish between nonlinear-excitation pathways in CdWO4. We nonlinearly excite a set of Raman-active
vibrational modes in CdWO4 with broadband THz pulses, and 2D spectroscopy allows us to determine the
dominant excitation pathway. We provide a general framework for 2D THz and multi-THz nonlinear
phonon spectroscopy in solid systems, which has important implications in contributing needed clarity to
the nascent field of nonlinear phononics.
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Terahertz (THz) spectroscopy has been growing in promi-
nence and promise over the last 20 years with applications
including chemical recognition [1], security and imaging [2],
nondestructive testing [3,4], studying nuanced interactions in
biological systems [5], extremely high-bandwidth wireless
communication, and developing future generation high-
speed devices [6]. Recent advances in high-field THz
generation [7–15] have introduced nonlinear THz optics
and the ability to study nonlinear sample responses with THz
excitation, opening up a new realm of experimental avenues
to pursue.
Intense THz electric-field pulses have proven useful in

observing fascinating effects in a number of materials
[16,17]; examples include accelerating electrons to high
momentum states [18–21] and perturbing electronic proper-
ties of a system to induce an insulator-to-metal transition
[22]. THz and multi-THz excitation of vibrational modes to
extreme amplitudes has allowed the experimental extraction
of the interatomic potential energy surface along certain
vibrational coordinates [23,24]. Strong THz radiation
enabled the first direct observation of an electromagnon in
multiferroic TbMnO3 [25].
Extreme excitation of materials can result in multiple

energy-flow pathways, and multidimensional spectroscopy
can help disentangle the dynamics, as has been shown with
2D (and higher-order) nuclear magnetic resonance and
optical spectroscopies [26,27]. It is clear that many complex
sample responses can only be understood and evaluated with
multidimensional spectroscopy. However, there are only a
handful of examples of 2D spectroscopy involving THz
excitation. The Elsaesser group used 2D multi-THz spec-
troscopy to examine electronic excitations in solids [28,29],
the Nelson group used 2D THz spectroscopy to study

collective spin waves and coherent rotational motion of
gases [30,31], and the Blake group reported 2D THz
spectroscopy studies of molecular vibrations in liquids
[32,33]. Here, we utilize intense THz electric fields to
nonlinearly drive vibrational modes in CdWO4. This work
contains an example of 2D-THz phonon spectroscopy in
crystalline CdWO4, and as described below, 2D spectros-
copy provides the necessary clarity to distinguish nonlinear
THz-excitation pathways.
Measurements were performed on a (010) 500 μm

CdWO4 sample. Intense THz pulses were generated via
optical rectification of (∼1 mJ, ∼100 fs) 1450-nm light
pulses in the organic salt, nonlinear optical crystal DSTMS
[34]. The THz pulses were focused to the sample with a
2-inch effective-focal-length, off-axis parabolic mirror and
characterized with electro-optic sampling using a 100-μm
thick (110) GaP bonded to a 1 mm thick (100) GaP slab.
A collinear sensitive polarization-gating scheme [35,36]
with ∼100-fs 800-nm pulses was used to detect coherently
excited Raman-active oscillations in CdWO4 [see Fig. 1(b)].
In this detection scheme, the probe light is initially
horizontally polarized and interaction with coherent
Raman-active phonons can result in scattered light with
rotated polarization (depolarized scattering). The induced
ellipticity of the transmitted probe light is converted to
changes in intensity with the combination of a λ=4 wave
plate (oriented with the slow axis parallel to the initial
polarization) and Wollaston polarizer, and the difference
between vertical and horizontal polarizations (ΔI) is
measured with balanced photodetectors. Two traces are
recorded with an initial polarizer rotated to �1.4°, and
the difference between the traces is analyzed (ΔIþ-ΔI−)
[36,37]. In the THz pump, 800-nm probe experiment, the
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THz pulse can excite dipole-active modes [infrared-(IR)-
active vibrations] and the 800-nm light can observe coherent
Raman-active vibrations. Similar pump-probe schemes have
proven useful in studying noncentrosymmetric materials like
LiNbO3 and Te, where vibrations that are simultaneously
IR- and Raman active can be directly excited and probed
[23,24,38]. But for centrosymmetric materials like CdWO4

[see Fig. 1(a)], vibrational modes are either IR active or
Raman active, never both. CdWO4 is of the point group C2h,
with modes that are Raman active (Ag orBg symmetry) or IR
active (Au or Bu symmetry). Figure 1(c) shows static Raman
scattering spectra ofmodeswithBg andAg symmetry (onlyBg

modes are observed in depolarized scattering measurements
[39]), as well as absorption peaks from IR-active vibrations
[41], and the experimental THz excitation spectrum.
Depending on the THz polarization relative to the crystallo-
graphic axes, Au or Bu IR-active modes within the excitation
spectrum will be directly excited; however the depolarized
800-nm polarization-gating probe is only sensitive to Bg

Raman-active modes.
Thus, it is surprising that when CdWO4 is excited with

intense THz radiation, long-lived phonon oscillations can

be observed [see Fig. 2(a)], with four observed frequencies
that match Bg symmetry modes seen in static Raman
scattering measurements [compare peaks at 2.3, 3.5, 4.0,
and 4.5 THz in Figs. 1(c) and 2(b)] [42]. We note that in
comparison to measurements on noncentrosymmetric
materials where modes can be directly excited and probed
in such a configuration [23,24], the oscillation amplitudes
observed here are very low, necessitating the more sensitive
detection scheme [35,36]. Because of the low frequency
of the modes, the thermal populations are fairly similar
between all modes, and the differences in Raman scattering
amplitudes in Fig. 1(c) are mainly due to Raman scattering
cross sections. In contrast, the relative amplitudes of peaks
in the THz excitation data in Fig. 2(b) are determined by a
combination of the Raman-scattering cross-sections and the
strength of nonlinear excitation.
In Fig. 2(c), we show how the normalized Fourier

amplitudes of the four peaks from Fig. 2(b) depend on
the THz polarization angle with respect to the sample. For
three of the modes, we see a minimum amplitude at 0°
(parallel to the crystallographic z axis) where the THz can
optimally excite the Au symmetry mode [3.5 THz, see ε00zz in
Fig. 1(c)] and another minimum at 90° where the Bu modes
[2.9 and 4.4 THz, see ε00xx in Fig. 1(c)] are most efficiently
excited (parallel to the crystal x axis). The maximum in
oscillation amplitude occurs at 45° (and 90° increments)
when the THz polarization is right in between the optimal
angles for exciting the IR-active modes. We note that one
Bg mode (at 3.5 THz) has a unique angle dependence that is
discussed in the Supplemental Material [39].
To better understand these results, we consider two non-

linear excitation pathways that could result in excitation of
these Raman-active modes: (i) indirect excitation due to
trilinear anharmonic coupling between IR- and Raman-
active modes (a so-called nonlinear-phononics pathway
[43–45]) and (ii) two-photon absorption (2PA) to directly
excite the Raman-active modes (a nonlinear-photonics path-
way) [46]. Just as higher-order correlations can easily be
obscured by cascading processes [27], care must be taken
to distinguish between these THz excitation routes. It is
challenging to differentiate between the two, and below we
show that 2D THz spectroscopy can discriminate the dom-
inant pathway.
Because the underlying interatomic potential energy sur-

face of CdWO4 is anharmonic, vibrational modes are
coupled to each other and these anharmonic couplings could
be exploited to indirectly excite specific vibrational coor-
dinates; specific IR-active modes can be resonantly excited
with THz radiation to large amplitudes, which then couple
to and transfer energy to other vibrations. For example, we
directly excite IR-active Au and Bu modes, which could
together drive the Raman-active Bg modes that we observe.
Such trilinear mode coupling has recently been posited with
supporting computational work [44], yet not experimentally
demonstrated. Coupling terms in the potential energy surface

(a) (b)

(c)

(a) (b)

(c)

FIG. 1. (a) CdWO4 crystal structure. (b) Schematic of THz
pump, optical-probe measurement of CdWO4. (c) Dotted red
lines indicate the static Raman scattering spectrum with Ag and
Bg modes labeled. The solid lines show ε00 for the Au (blue, ε00zz)
and Bu (purple, ε00xx) modes from Ref. [41]. The shaded region
shows the THz excitation spectrum.
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equation are only allowed if products of irreducible
representations of the modes involved include the totally
symmetric representation, which is Ag in CdWO4 (see
Supplemental Material [39]). The relevant product is Ag ⊂
hBgjAuBui, where the symmetry elements represent the
involved vibrational modes, making this type of trilinear
coupling allowed in CdWO4. This results in an equation of
motion for Raman-active modes of

Q̈R þ 2ΓR
_QR þ ω2

RQR ¼ −c12RQIR1
ðtÞQIR2

ðtÞ; ð1Þ

where QR is the Raman-active mode coordinate, ΓR is the
damping rate, ωR ¼ 2πνR is the angular frequency of the
mode, c12R is the strength of the trilinear coupling, andQIRi

are the two directly excited IR-active vibrational mode
coordinates. Equation (1) is used to abbreviate the full set
of coupled equations describing the excitation and energy
transfer; the full equations of motion can be found in the
Supplemental Material [39]. As seen with the driving term
on the right-hand side of Eq. (1), if a pair of IR-active modes
are simultaneously excited to large enough amplitudes, the
atomicmotions together can act as a driving force forRaman-
active modes. For a linearly polarized THz excitation pulse,
this equation predicts both maximum oscillation amplitudes

at a THz polarization of 45° (when bothAu andBu modes are
excited simultaneously), as well as the quadratic amplitude
dependence on incident THz electric field strength observed
in Fig. 2(d) (assuming a linear QIRi

amplitude dependence
on electric field strength).
The second pathway one needs to consider involves

two-photon direct excitation of the Raman-active modes
[46]. In 2PA an essentially identical symmetry requirement
exists to allow excitation of Bg vibrational modes; one
photon polarized along the crystallographic z axis behaves
with Au symmetry and while the other polarized along the
x axis has Bu symmetry, resulting in the allowed excitation
of Bg vibrational modes according to hBgjAuBujAgi ⊃ Ag

(see Supplemental Material [39]). This gives the following
equation of motion

Q̈R þ 2ΓR
_QR þ ωR

2QR ¼ δ12RE1ðtÞE2ðtÞ
¼ d12R cosðθÞ sinðθÞEðtÞ2; ð2Þ

where δ12R is the 2-THz-photon absorption cross section for
the Raman-active mode, and the second equality assumes
linearly polarized light at angle θ with respect to the z axis,
and polarization components E1ðtÞ ¼ cosðθÞEðtÞ and

(a) (c)

(b) (d)

FIG. 2. (a) Observed time-domain oscillations and (b) Fourier transform showing peaks for 4 Bg vibrational modes. The inset of (a)
shows the THz excitation waveform. (c) THz polarization angle dependence of (normalized) Fourier amplitudes of the four modes. The
solid vertical and horizontal lines show at what angles Au and Bu IR-active modes will be excited. The blue line shows the amplitude
dependence expected from Eqs. (1) and (2). (d) The oscillation amplitudes as a function of the incident THz electric field. The solid lines
show the expected quadratic dependence from Eqs. (1) and (2).
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E2ðtÞ¼sinðθÞEðtÞ. Both Eqs. (1) and (2) predict the maxi-
mum oscillation amplitude at 45° THz polarization, where
the product of vector polarization components is at a
maximum. We also note that in the case of 2PA, as above
with anharmonic coupling, the oscillation amplitude should
increase quadratically with the incident THz electric field as
observed in Fig. 2(d). Thus, we see that both excitation
routes predict the two main observations of Fig. 2: the
THz-polarization dependence and the THz-electric-field
dependence. These results indicate that nonlinear excitation

is occurring, but are not enough to specify which excitation
route is dominant. We therefore turn to 2D spectroscopy that
enables us to distinguish between the excitation routes.
For 2D measurements, we generate 2 THz pulses with a

variable delay, and we observe the sample response with
the same 800-nm probing scheme. This represents what has
been termed a 2D THz-THz-Raman (TTR) measurement
scheme [32,33,47]. The false-color plot in Fig. 3(a1) shows
the oscillatory signal as a function of the relative 800-nm
probe delay on the x axis and relative delay between the

FIG. 3. 2D THz-Raman measurement of CdWO4 (upper three panels) and comparison to two modeled excitation pathways (lower six
panels). (a1),(b1),(c1) show the time-domain response as a function of probe delay and relative delay between two THz pump pulses.
(a2),(b2),(c2) are determined by Fourier transforming along the probe-time axis. (a3),(b3),(c3) are subsequently generated by Fourier
transforming along the pump-delay axis. The absolute value of the Fourier transforms is plotted. The dashed boxes highlight regions of
interest showing better agreement between the experimental data and the 2PA model.
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two THz pump pulses along the y axis. The very top line of
Fig. 3(a1), when the timing between THz pump pulses is
as large as the probe window (10 ps), would essentially
reproduce the data shown in Fig. 2(a). We can clearly see
that the oscillatory response [after the second pump pulse–
the diagonal feature in Fig. 3(a1)] is strongly influenced by
the relative delay of the two pump pulses. This is even more
clear in Fig. 3(a2), where we have taken the Fourier
transform along the probe time axis; the magnitude of
the Fourier peaks from the 4 oscillations vary strongly with
pump delay, each with unique spacing. By varying the
pump delay, we can control the energy flow to shut off
certain frequencies while exciting others in a clear dem-
onstration of coherent control. Next, we take the Fourier
transform along the pump-delay axis to create Fig. 3(a3)
and show how the sample frequency response varies with
excitation frequency.
To analyze the sample response, and compare to our

proposed excitation routes, we use Eqs. (1) and (2) to
model the 2D signal for both cases. Figure 3, panels (b1),
(b2), (b3) show the modeled anharmonic coupling response
[Eq. (1)] and panels (c1), (c2), (c3) show the modeled 2PA
response [Eq. (2)]. First, we see that both models reproduce
well the spectral amplitudes of the vibrations when com-
paring Figs. 3(b2) and 3(c2) to Fig. 3(a2). Some differences
are noticed when comparing the modeled time-domain
responses to each other and the data [3(a1), 3(b1), 3(c1)],
but when we compare the two varieties of frequency
domain data [3(a2), 3(b2), 3(c2) or 3(a3), 3(b3), 3(c3)],
important differences become more apparent, most notably
in the region outlined by dashed rectangles. The exper-
imental data lack a prominent feature just below 1 THz that
is present in the anharmonic coupling model [see Figs. 3
(b2) and 3(b3)] that, according to the model, would result
from strong driving of atomic motion at the difference
frequency of two excited IR-active vibrations. The 2PA
model lacks this feature and overall has very good agreement
with experiment. Therefore, we conclude that the two-
photon excitation pathways dominate the observed results.
Here we have shown that intense THz pulses can

nonlinearly excite a set of Raman-active vibrational modes.
We considered anharmonic phonon coupling and 2PA
excitation routes and showed that single-pulse excitation
measurements were not enough to unambiguously distin-
guish the dominant excitation pathway. These results have
important general implications for the rising field of non-
linear phononics [23,43–45,48,49]. For example, an anhar-
monic coupling mechanism was used to explain the single-
pulse excitation results in Ref. [43] that introduced the
concept of nonlinear phononics, but a multiphoton (differ-
ence frequency) pathway could possibly also explain the
observations. 2D THz-Raman spectroscopic analysis
allowed us to distinguish between photonic and phononic
excitation pathways and determine that 2PA is the dominant
excitation pathway in CdWO4. As more systems are studied

with high-field THz radiation to explore fundamental
material properties and cutting-edge device development,
multidimensional measurements will be needed to elucidate
energy transfer pathways.
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