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Dissociative electron attachment (DEA) plays a key role in radiation damage of biomolecules under
high-energy radiation conditions. The initial step in DEA is often rationalized in terms of resonant electron
capture into one of the metastable valence states of a molecule followed by its fragmentation. Our
combined theoretical and experimental investigations indicate that the manifold of states responsible for
electron capture in the DEA process can be dominated by core-excited (shake-up) dipole-supported
resonances. Specifically, we present the results of experimental and computational studies of the gas-phase
DEA to three prototypical peptide molecules, formamide, N-methylformamide (NMF), and N,N-dimethyl-
formamide (DMF). In contrast to the case of electron capture by positively charged peptides in which amide
bond rupture is rare compared to N─Cα bond cleavage, fragmentation of the amide bond was observed in
each of these three molecules. The ion yield curves for ions resulting from this amide bond cleavage, such
as NH−

2 for formamide, NHCH−
3 for NMF, and NðCH3Þ−2 for DMF, showed a double-peak structure in the

region between 5 and 8 eV. The peaks are assigned to Feshbach resonances including core-excited dipole-
supported resonances populated upon electron attachment based on high-level electronic structure
calculations. Moreover, the lower energy peak is attributed to formation of the core-excited resonance
that correlates with the triplet state of the neutral molecule. The latter process highlights the role of optically
spin-forbidden transitions promoted by electron impact in the DEA process.
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Low-energy electrons (LEE), formed in secondary proc-
esses that accompany high-energy light-matter interactions,
are the key players in radiation damage of biomolecules,
including DNA [1] and proteins [2]. These electrons can be
temporarily trapped to form transient negative ion (TNI)
species, which further undergo electronic and structural
transformation leading to fragmentation [Fig. 1(a)], a
process called dissociative electron attachment (DEA).
LEE-induced damage to DNA was first experimentally
demonstrated by Sanche and co-workers who showed that
LEE irradiation resulted in single- and double-strand breaks
in DNA [3]. Since then, many experimental and theoretical
works [1,4–8] have been devoted to the LEE-induced
fragmentation of biomolecules to obtain a comprehensive
picture of the damage mechanism. It has been shown that
shape [Fig. 1(b)] resonances are mostly responsible for
single-strand breaks in the low-energy range (0–3 eV)
[9–11], whereas shake-up resonances cause both single-
and double-strand breaks for higher energy electrons [1,12].
The mechanisms of peptide interaction with slow electrons
are even more complex due to both the structural diversity
and the heterogeneous charge distribution.
The peptide bond is the basic linkage in proteins. Thus, it

is one of the most widely existing structural motifs in
nature. Peptides also play an important role in a host of

biological activities in organic systems. In clinical studies,
several inhibitory peptides have been confirmed to be
effective in the treatment of cancers and other diseases
[13,14]. Because secondary electrons are the most abun-
dant species among all of the daughter species produced by

(a) (b)

FIG. 1. Electronic states relevant for DEA processes. (a) Sche-
matic potential energy curves of an initial neutral, dipole-bound
state (DBS) and anionic π� and σ� states populated upon electron
attachment. (b) Electronic configuration of shape and shake-up
(core-excited) resonances.
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radiation in cells [15] a study of the impact of LEEs on
peptides is critical to discover the potential radiation
damage pathways involving proteins. This knowledge will
be essential for improving radiotherapy, which is currently
the most widely adopted treatment for cancer. Additionally,
because of the bond-specific fragmentation pattern that is
manifested by DEA [4,16–18], this mechanism is very
promising for engineering new techniques for compound
analysis. One example is the utilization of electron capture
dissociation in peptide and protein sequencing using
tandem mass spectrometry [19–21]. For this purpose,
positively charged gas-phase peptides are irradiated with
low-energy electrons. The identities and abundances of the
electron attachment-induced fragment ions are then moni-
tored by a mass spectrometer. Because this method selec-
tively cleaves disulfide and N─Cα bonds, characterization
of the peptides can be achieved by analyzing the mass
spectra. Although this technique has been successfully
applied to many different types of polypeptides, the
detailed mechanisms of electron attachment-induced dis-
sociation and the nature of the TNIs produced in peptides
are still poorly understood.
Whereas the main dissociation channels for charged

peptides and peptide radicals are associated with N─Cα and
S─S bond cleavage, the products formed upon dissociation
along the peptide bond have also been observed [21]. Here,
we focus on the mechanism of the electron-capture-induced
cleavage of a peptide bond by considering several proto-
typical neutral systems. Depending on the energetics of
electron attachment, reactive electron scattering on a
neutral molecule can lead to the formation of either bound
states of the anion or transient negative ion states, which are
states that are metastable with respect to electron ejection.
Special care should be taken when theoretically describing
these metastable electronic states, i.e., resonances. Electron
capture can be rationalized in terms of the population of
unoccupied π� or σ� virtual orbitals, i.e., the formation of
shape valence resonances or the formation of core-excited
resonances when two of the initially unoccupied orbitals
become populated [Fig. 1(b)]. Dipole bound states (DBS)
that are often coupled to valence metastable states have
previously been discussed as the key players in low-energy
DEA for molecules with large enough dipole moments
[22–26]. While DEA processes in prototypical biomole-
cules have been extensively studied by both experiments
and theory, a complete mechanistic picture remains elusive.
Here, we present results from a comprehensive computa-

tional and experimental investigation on the DEA to gas-
phase formamide [Fig. 2(a)], the smallest prototype of a
peptide, and its methylated derivatives, N-methylforma-
mide [NMF, Fig. 2(b)], and N,N-dimethyl-formamide
[DMF, Fig. 2(c)]. Experimentally, the ion yield curves
for the anions as a function of the incoming electron’s
energy were measured [27]. High-level electronic structure
calculations were exploited to interpret the experimental

results, i.e., to identify the most efficient electron capture
channels responsible for formation of the TNIs in the
experimentally observed energy range.
Electron attachment to gas phase formamide, NMF, and

DMF can cause the parent molecules to fragment into
several pathways [57]. Here, we focus on amide bond
cleavage. A detailed discussion of the ion yield curves for
all anionic fragments is beyond the scope of the present
work; however, our data agree well with the results of
previously reported measurements for formamide and
NMF [33,57]. It is well known that large polypeptides
can break down into small fragments via bond cleavage in
the backbone via the capturing of low-energy electrons
[19,58]. In the case of low-energy electrons attaching to
positively charged peptides, N─Cα bond rupture is reported
to be the dominant pathway for breaking the peptide
backbone [20]. In contrast, N─Cα bond cleavage, i.e.,
N-CH3 in NMF and DMF, leading to anion formation was
not observed in DEA to neutral small peptide model
molecules. Note that neutral fragments are challenging
to detect [59], and any channels leading exclusively to
neutral fragments (i.e., no anion fragment) are not consid-
ered here. However, the amide bond, ðC ¼ OÞ-N, was
found to be damaged in all the molecules investigated here,
and it occurs in a similar energy region.
The simple amide bond cleavage breaks the molecules

into HCO (29 amu) and NH2 (16 amu) from formamide,
NHCH3 (30 amu) from NMF, and NðCH3Þ2 (44 amu) from
DMF with the negative charge potentially being located on

(a)

(b)

(c)

FIG. 2. Dissociative electron attachment ion yield curves for
formamide (a), NMF (b), and DMF (c). Computed position of π�
resonances (red arrow), thermodynamic thresholds (green),
energies of singlet (gray), and triplet (orange) excited states of
the neutrals with large enough dipole moment to bind an electron
are shown.
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either the N-containing or HCO fragments. In our experi-
ment, in which the pressure of the vacuum chamber
after dosing the sample was controlled at approximately
1 × 10−6 mbar, no resonant signal was observed in the ion
yield curve for anions at 29 amu (HCO). Therefore, to study
the DEA-induced amide bond cleavage, the ion yields for
NH−

2 , NHCH
−
3 , and NðCH3Þ−2 from formamide, NMF, and

DMFweremeasured. Resonant peaks are observed in the ion
yield curves for each of these anionic fragments as shown in
Figs. 2(a)–2(c).
The process of DEA in formamide proceeding through

the amide bond cleavage and leading to the formation of
NH−

2 can be expressed as follows:

HCONH2!e ðHCONH2Þ�− → HCOþ NH−
2 : ð1Þ

First, the incoming electron attaches to a formamide
molecule forming a TNI, which further decays via
ðC ¼ OÞ-N bond dissociation. The ion yield curve of
NH−

2 (16 amu) as a function of the incoming electron
energy exhibits two major peaks at ∼5–7 and 10 eV
[Fig. 2(a)]. The 10 eV signal originates from O− yield,
which was confirmed by a previous isotopic study [33].
Thus, only the broad feature at 5–7 eV is due to NH−

2 . The
feature consists of a major peak at 6.9 eV and a broad
shoulder on the lower energy side centered at 5.9 eV. The
position of the main peak is consistent with 6.8 eV reported
by Hamann et al. [33] Thus, the experimental signal
suggests population of at least two different TNI states
responsible for efficient resonant electron capture in the
energy range of 5–8 eV.
The double peak structure is even more pronounced in the

case of theNHCH−
3 (30 amu) signal forNMF [Fig. 2(b)]. The

two peaks are centered at 5.5 and 6.7 eVand have a similar
intensity. The reaction pathway for formation of NHCH−

3

from NMF can be written as

HCONHðCH3Þ!e HCONHðCH3Þ�− → HCOþ NHCH−
3 :

ð2Þ
In the case of DMF, amide bond cleavage results in the

formation of the anion, NðCH3Þ−2 , as shown in reaction
scheme (3). The ion yield curve of NðCH3Þ−2 (44 amu) also
exhibits two distinct peaks in the region of 4.5 to 8 eV
centered at 5.4 and 6.9 eV.

HCONðCH3Þ2!e ½HCONðCH3Þ2��− → HCOþ NðCH3Þ−2
.ð3Þ

Importantly, a double peak structure is observed for all
three ion yield curves resulting from DEA-induced amide
bond cleavage. The distance between the two peaks
increases with the mass of the molecules. The high energy
peaks remain relatively unaffected by nitrogen atom
methylation, whereas the lower energy feature shifts to
lower energies.

To explain the observed resonant electron capture by
formamide molecules and the double peak structure, we
performed a series of electronic structure calculations
aimed at characterization of the metastable electronic states
that can be formed in the 5–8 eV energy range. The results
of the calculations are summarized in Figs. 2–4 (See
Sec. S2 for more details [27]). Both of the peaks for all
three molecules lie significantly above the thermodynamic
thresholds for formation of the anionic fragments (Fig. 2).
To assign the double peak structure to specific metastable
electronic states, we considered four possible channels of
electron capture: formation of a valence shape, valence core
excited, dipole-supported core-excited resonances, and
doubly-excited Rydberg shake-up resonances. The calcu-
lated positions (widths) of the π� shape resonance are 2.9
(0.42), 3.2 (0.12), and 3.4 (0.30) eV for formamide, NMF,
and DMF, respectively (Table S4 [27]). This resonance,
therefore, is significantly below the thermodynamic thresh-
olds for the peptide bond cleavage. Note that all three
molecules have only one valence π� orbital. The σ� valence
resonances, if they exist, are expected to be significantly
higher in energy (Sec. S2D of the Supplemental Material
[27], Fig. S1). Thus, valence shape resonances can be
discarded as the channels explaining DEA processes
leading to amide bond cleavage. The second group of
metastable states that can be populated upon electron
attachment to the formamides are valence core-excited or
shake-up resonances in which two valence virtual orbitals
are populated and one of the originally doubly occupied
orbitals is singly occupied (Fig. 1). No such state has been
observed in the 5–8 eV energy range (Table S5 [27]). The
third group of states are Feshbach resonances in which one
of the populated virtual orbitals is the orbital corresponding
to a DBS. These states can be described as states of the
system with an electron trapped into a DBS of the excited
neutral core. Quantitative characterization of these states,
their energies and widths, is extremely challenging because
of their diffuse character, doubly-excited nature (excited
and electron-attached) with respect to the closed shell
reference, and the high number of discretized continuum
states lying below these resonances in energy. Yet, an
estimate of the energies of these states can be obtained by
evaluating excitation energies of the neutral molecules and
the dipole moment of the resulting excited states. In the
case of a large dipole moment (>2.5 D or 1.0 a.u.)
[39,60,61], the resulting excited state can bind an electron
forming a dipole bound state. The binding energies of
electrons in the DBS are usually in the meV range;
therefore, bare excitation energies of the neutral should
be reliable estimates of the energies of the DBS themselves.
Computed equation-of-motion coupled cluster with single
and double substitution (EOM-EE-CCSD) [43,62,63] exci-
tation energies of the singlet excited states of formamide
and corresponding values of the excited states dipole
moment are shown in Fig. 3. As shown, there are several
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excited states of the neutral formamide in the energy range
of 5–8 eV. However, all the states with a large enough
dipole moment to form a DBS are located above 6.9 eVand
cannot explain the low energy shoulder observed in the
experimental results. The singlet-singlet excitation energies
and dipole moments for NMF and DMF are listed in the
Supplemental Material (Tables S7 and S8) [27].
Meanwhile, in addition to the DBSs that correlate with

the singlet excited neutral core, the states that are associated
with the triplet excited states of the neutral can also be
populated upon electron scattering because both types of
states belong to the same manifold of doublet states
(Fig. 4). Indeed, “spin-forbidden” transitions are common
upon electron impact and have been routinely used to study
the spectroscopy of the corresponding excited states
[64–67]. Ground state singlet-triplet energy gaps computed
with spin-flip EOM-CCSD (EOM-SF-CCSD) [43,68,69]
for neutral formamide are shown in Fig. 5. In contrast to the
manifold of the singlet excited states, there is a low-energy

triplet ππ� excited state with a large dipole moment that can
capture an electron and form a DBS. The computed singlet-
triplet energy gaps for NMF and DMF can be found in the
Supplemental Material (Tables S7–S8). Excitation energies
for the singlet and triplet excited states with a dipole
moment greater than 1.0 a.u. for all three molecules are
shown in Fig. 2. Importantly, the positions of both high
energy and low energy peaks as well as the peak shifts
between different homologues can be explained by the
formation of dipole-supported resonances by both the
triplet and singlet excited states of the neutral. In particular,
the shift of the lower energy feature from formamide to
NMF and DMF can be explained by the redshift in the
excitation energy of the triplet ππ� of the neutral from 5.8 to
5.6 and 5.4 eV, respectively. While the interpretation of the
DEA ion yield curves presented here is solely based on the
computed excitation energies and singlet-triplet energy
gaps, the accuracy of the calculation is high enough (the
error bars are expected to be within 0.1–0.2 eV, see Sec.
S2.F1 of the Supplemental Material for more details [27])
for a reliable band assignment. Finally, a fourth group of
states that could conceivably contribute to electron capture
below10 eVis associatedwith shake-up resonanceswith two
electrons occupying Rydberg orbitals. These Feshbach
resonances are common gateway states for electron capture
in electron transmission spectroscopy and dissociative elec-
tron attachment processes [50,51].While direct evaluation of
energies and lifetimes of these resonances for large many-
electron molecular systems is extremely challenging owing
to very diffuse character of corresponding Rydberg orbitals
in addition to their Feshbach nature, the estimates of their
positions can be obtained from empirical relations to
ionization potential or energy of the corresponding excited

FIG. 3. EOM-EE-CCSD excitation energies (eV) for five
lowest singlet A0 and A00 states in formamide. Detachment and
attachment densities, and the computed values of dipole moment
(a.u.) are also shown [see Sec. S2F of the Supplemental Material
for details [27] ].

FIG. 4. Schematic electronic configurations of the electron-
attached doublet states that correlate with the singlet and triplet
excited states of the neutral core.

FIG. 5. EOM-SF-CCSD excitation energies (eV) for five lowest
triplet A0 and A00 states in formamide. Detachment and attachment
densities, and the computed values of dipole moment (a.u.) are
also shown (see Sec. S2 F of the Supplemental Material for
details [27]).
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Rydberg state of the neutral [51–56]. The linear relation
between resonance energy and ionization potential [56]
places the lowest ðsÞ2 Rydberg Feshbach resonance in
formamide at 6.5 eV (see Sec. S2. G of the Supplemental
Material [27]). Similarly, the estimates of the s2 resonance
obtained from excitation energies of the neutral are in 6.2–
6.5 eVenergy range. Therefore, while these resonances can
contribute to the higher energy peak at 6.5–7 eV, the doubly
excited Rydberg Feshbach resonance cannot explain the
lower energy feature below 6 eV. Thus, in contrast to theLEE
damage in DNA bases in which shape resonances play a
crucial role in the low-energy range, amide bond cleavage in
formamides proceeds via formation of Feshbach resonances
including dipole-supported core-excited resonances, which
correlate with both the singlet and triplet excited states of the
neutral molecules.
To summarize, here we present combined experimental

and computational investigations into the mechanism of
DEA in a series of gas-phase model peptides, formamide,
NMF, andDMF.Wehave shown that amide bond cleavage is
the common dissociation mechanism for all three species.
Furthermore, based on our computational studies, the DEA
below 6 eV proceeds via formation of dipole-support core-
excited resonances that correlatewith both singlet and triplet
excited states of the neutral. Whereas a detailed characteri-
zation of energetics and lifetimes of these resonances is the
subject of futurework, it is clear that the formation of dipole-
supported resonances can be a common mechanism for the
DEA to peptides, and this requires further exploration via
both theory and experiments.
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