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We prove that soft theorems uniquely fix tree-level scattering amplitudes in a wide range of massless
theories, including Yang-Mills, gravity, the nonlinear sigma model, Dirac-Born-Infeld, dilaton effective
theories, extended theories like the NLSM ⊕ ϕ3 (nonlinear sigma model ϕ3), as well as some higher
derivative corrections to these theories.We conjecture the same is true even when imposing more general soft
behavior, simply by assuming the existence of soft operators, or by imposing gauge invariance or the Adler
zero only up to a finite order in soft expansions. Besides reproducing known amplitudes, this analysis reveals a
newhigher order correction to theNLSMand two interesting facts: the subleading theorem for the dilaton, and
the subsubleading theorem for DBI follow automatically from the more leading theorems. These results
provide motivation that asymptotic symmetries contain enough information to fully fix a holographic S
matrix.

DOI: 10.1103/PhysRevLett.122.071601

Motivation.—Three related concepts are central to quan-
tum gravity: holography, the S matrix, and the black hole
information paradox. The holographic principle states that a
theory with gravity in the bulk may be described completely
by a nongravitational quantum field theory on the boundary.
This motivates how Hawking entropy can be proportional to
the area of a black hole instead of its volume.
The S matrix on the other hand is the unique local gauge

invariant observable of quantum gravity. The naïve merger
of quantum mechanics and general relativity leads to
tensions with locality and unitarity, and the Smatrix should
have a formulation that avoids these tensions. This is
expected only because the S matrix itself is a naturally
holographic object: it describes the hinjoutimatrix of states
measured at asymptotic infinity.
Recently, the holographic nature of the S matrix was

made even more concrete by demonstrating the equivalence
between asymptotic symmetries and soft theorems [1–5],
opening new paths towards finding a holographic dual of
flat space-time itself, some of which are reviewed in
Ref. [6]. Even more surprisingly, it was proposed that
infrared considerations and asymptotic symmetries can
have implications for the black hole information paradox
[7–9]. This raises an apparently superficial question: how
much information can soft particles actually carry?
The goal of this Letter is to take inspiration from the

above issues and ask a more well-defined question, in the

spirit of the S-matrix program: how much of an amplitude
can be fixed by soft theorems?
The naïve answer is that the low energy (IR) behavior of

amplitudes is completely disjointed from the high energy
(UV) behavior, so soft particles can only carry some partial
information, fixing only the IR part of an amplitude. The
following separation seems valid then:

A ¼ AIRðSoft theorem satisfyingÞ
þ AUVðSoft theorem avoidingÞ: ð1Þ

But, surprisingly, we find that the UV information is not
inaccessible via soft theorems—it is simply hidden in
several different soft limits. This implies that soft theorems
are sufficient to fully fix scattering amplitudes. And in fact,
even milder soft behavior can be used instead of the full soft
theorems, and still we find that the amplitudes are fixed.
This enables us to discover scattering amplitudes starting
from soft operators, or what we will call “soft gauge
invariance” or “soft Adler zero.”
Review of soft theorems.—Soft theorems describe a

universal behavior of scattering amplitudes when the
energies of one or more massless particles are taken to
zero. This limit is taken by rescaling momenta with a soft
parameter pμ → zpμ, and taking the z → 0 limit. The soft
theorems then imply a factorization of the following form:

An → ðzσSð0Þ þ zσþ1Sð1Þþ;…ÞAn−1; ð2Þ
where the Si are called soft operators and encode sym-
metries of the theory being considered.
Originally discovered for photons in Ref. [10] and

extended to gravitons in Ref. [11], soft theorems have
enjoyed a renewed interest, at least in part due to their
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uncovered equivalence to memory effects and asymptotic
symmetries [12], and the discovery of a new soft theorem
for gravitons [13]. These results subsequently lead to an
investigation of soft theorems and asymptotic symmetries
for many other theories [14–49]. Soft theorems were shown
to follow from considerations of gauge invariance, locality,
unitarity, [50,51], shift symmetries in the case of scalar
theories [52–54], the CHY formalism [55–60], ambitwis-
tors [61,62], or transmutation operators [63]. Soft theorems
for dilaton theories also hinted towards a hidden conformal
symmetry in gravity [64].
A different example of surprising soft behavior is known

as the Adler zero [65,66], which states that certain scalar
amplitudes vanish at leading order in single soft limits:

An → OðzÞ ð3Þ

This property has been exploited in the construction of
various effective theories: the nonlinear sigma model
(NLSM), Dirac-Born-Infeld (DBI), the Galileon [67,68],
and special Galileon (see Refs. [55,69] for overviews of
these theories).
This was done by constraining the theory space of

possible effective theories [70–73], by direct construction
using newly enabled recursions [74,75], and most recently
through the “soft bootstrap” procedure [76]. This special
behavior was also used to rule out possible counterterms in
N ¼ 8 supergravity [77,78], recently shown to be finite up
to 5 loops in D ¼ 4 [79].
Soft limits as formal Taylor series were also crucial to

proving that various scattering amplitudes can be fixed by
only three conditions: “weak” locality, gauge invariance or
Adler zero, and minimal mass dimension [80,81].
Similarly, in Ref. [82] they were used to argue that there
exist unique objects satisfying locality and correct
D-dimensional BCFW scaling [83–85].
This Letter is a continuation of this previous work,

investigating the constraints imposed by locality and various
types of soft behavior. In most cases, we find that these
properties are even more powerful than gauge invariance or
Adler zero, allowing us to also fix the highermass dimension
corrections to various scattering amplitudes. This includes
those corresponding to F3 or F4 operators for Yang-Mills
(YM) theory, and similar corrections for general relativity
(GR), NLSM, DBI, or conformal dilaton theories. We also
directly improve the previous results of Refs. [80,81], by
imposing gauge invariance or Adler zero only up to a finite
order in soft expansions. Finally, the NLSM (DBI) unique-
ness from Adler zero results in the previous work becoming
central to proving uniqueness from soft theorems for YM
(GR), providing yet a new connection between these
theories.
Fixing amplitudes with soft behavior.—The strategy

works as follows. First, we pick some theory and a known
“seed” amplitude An−m at (n −m) points, and a

corresponding higher point Ansatz BnðpkÞ, which satisfies
the following properties: (1) it is a function only of dot
products between D-dimensional momenta pi and polari-
zation vectors ei for particles with spin; (2) it is on shell, so
it satisfies n-particle momentum conservation, as well as
eipi ¼ 0 and pipi ¼ 0; (3) it is local, so its singularities
correspond to propagators of n-point tree diagrams; and
(4) its numerators have mass dimension k.
Then we take m particles soft as pi ¼ zpi, z → 0,

obtaining an expansion

Bn → zσB0
n þ zσþ1B1

n þ zσþ2B2
nþ;…: ð4Þ

Finally we demand that this matches the soft theorems
corresponding to our chosen theory (which always only
exist up to a finite order N)

Bn → ðzσS0 þ zσþ1S1þ;…;þzNSNÞAn−mþ;…: ð5Þ

This imposes constraints on the free parameters in Bn, and
what we find in many cases is that the Ansatz is fully fixed
by this procedure. Only Bn ¼ An, the appropriate higher
point amplitude, can satisfy all soft theorems.
But the constraints coming from IR behavior can be

relaxed beyond what is dictated by soft theorems, and still
we find that the UV part is also fixed. Instead of starting
with a known amplitude An−m, we can impose the follow-
ing constraint on two Ansätze Bn and Bn−m:

Bn → ðzσS0 þ zσþ1S1þ;…;þzNSNÞBn−mþ;…; ð6Þ

using only the soft operators of some theory as input. We
find in many examples that both Bn−m and Bn are fully
fixed, and equal to the amplitudes corresponding to the soft
operators used.
Finally, we consider an even more general soft behavior.

In the soft expansion [Eq. (4)] we simply require B0
n up to

BN
n to satisfy gauge invariance (for spin theories), or the

Adler zero (for pion theories) in the soft particles. Even this
very weak condition is apparently sufficient to fix Bn ¼ An.
In conclusion, we propose three new constraints pertain-

ing purely to the IR behavior which, together with locality,
completely fix various scattering amplitudes: (1) soft
theorems, (2) soft operators, and (3) soft gauge invariance
or soft Adler zero.
The above results seem to hold for all massless theories

which satisfy soft theorems. This includes QED, Yang-
Mills theory, gravity, NLSM, DBI, dilaton effective theory
[42,86–89], among others. Most such amplitudes are of
course already known, but we do discover a novel ampli-
tude: the two extra derivative corrections to the NLSM.
Higher corrections to the NLSM were computed in
Ref. [90], but those start at four extra derivatives.
In the next sectionwe present the general argument for one

of the three claims, namely uniqueness from soft theorems.
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Soft theorem avoiding terms and enhanced soft limits.—
The argument for uniqueness from soft theorems is
straightforward: assume there are two different objects,
the amplitude An, and some other function Bn, satisfying
the same soft theorems, which exist up to some order
OðzNÞ. This implies the difference Bn − An must behave as
OðzNþ1Þ in all n soft limits. Therefore, after imposing the
soft theorems on Bn, it must take a form

Bn → ½piece satisfying soft theorems� þ ½OðzNþ1Þterms�:
ð7Þ

The question is then whether such OðzNþ1Þ soft theorem
avoiding terms can exist at the mass dimension being
considered. If these terms do not exist, it follows that Bn ¼
An, so there is a unique object satisfying the soft theorems.
Surprisingly, it turns out that, for the most common

amplitudes, and even their low lying derivative corrections,
this is indeed the case. Their mass dimension is too low to
allow any soft theorem avoiding terms.
Proving this is slightly more complicated than simple

power counting, because momentum conservation can lead
to nontrivial cancellations in soft limits, which contradicts
naïve power counting. Various scalar amplitudes do in fact
enjoy such an enhanced soft behavior: (1) NLSM, DBI, and
special Galileon only exist for evenmultiplicity, have quartic
propagator structure, with numerators of mass dimensions
½n − 2�, ½2n − 4�, and ½3n − 6�, with single soft scalings
OðzÞ, Oðz2Þ, and Oðz3Þ, respectively; and (2) Galileon
vertex: polynomial of mass dimension (2n − 2), with single
soft scaling ofOðz2Þ, and double soft scalingOðz4Þ. Wewill
call such objects enjoying enhanced soft limits Aenh.
Therefore, depending on the theory, multiplicity, and

mass dimension, imposing the soft theorems on an Ansatz
Bn can lead to one of three outcomes

Bn ¼ An; ð8Þ

Bn ¼ IR½An� þ fðe; 1=KÞAenh; ð9Þ

or

Bn ¼ IR½An� þ ½trivially scaling objects�; ð10Þ

where IR[An] is the IR piece of An that is under the control
of soft theorems, and fðe; 1=KÞ can be some function of
polarization vectors and propagators.
In the following sections we investigate several theories

in detail.
Yang-Mills theory.—Color-stripped Yang-Mills ampli-

tudes satisfy single soft theorems [14]

An →

�
1

z
S0 þ z0S1

�
An−1 þOðzÞ; ð11Þ

where the leading soft factor is

S0 ¼
enp1

pnp1

−
enpn−1

pnpn−1
; ð12Þ

which hold even for amplitudes with higher derivative
corrections. These correspond to higher mass dimension
operators in the general effective Lagrangian [91–93]:

L ¼ F2 þ a0F3 þ a1F4
1 þ a2F4

2 þ a3F4
3 þ a4F4

4þ;…;

ð13Þ

where the F4
i operators represent the different possible

contractions of four field strengths.
Our goal is to obtain the various amplitudes by starting

from a local Ansatz, BnðpkÞ. Since we are after YM
amplitudes, the Ansatz must be multilinear in n polarization
vectors, its poles must correspond to propagators of planar,
ordered, graphs with trivalent vertices (such as in Fig. 1), its
mass dimensionmustmatch, sowe fix k ¼ n − 2þ κ powers
of momenta in the numerators. We introduce κ to keep track
of the extra number of derivatives in the operator considered:
κ ¼ 0 corresponds to the usual YM amplitude; κ ¼ 2

corresponds to the amplitude with an F3 operator insertion;
for κ ¼ 4 there are five different amplitudes, corresponding
to an ðF3Þ2 or an F4-type operator insertion.
Soft theorems: To illustrate the procedure, we first

consider the n ¼ 5 case, which can be checked explicitly,
and then prove the statement for general n.
The κ ¼ 0 Ansatz B5ðp3Þ contains five diagrams, with

around 500 terms per diagram. For example, one such term
corresponding to the diagram in Fig. 1 is this:

B5ðp3Þ ¼ a1
e5p1e1e2e3e4p1p2

ðp1 þ p2Þ2ðp1 þ p2 þ p3Þ2
þ;…: ð14Þ

where a1 is one of the free parameters of the Ansatz. Next
we impose the following soft theorems:

B5ðp3Þ → 1

z
B−1
5 þ z0B0

5þ;…;¼
�
1

z
S0 þ z0S1

�
A4þ;…;

ð15Þ

by matching

FIG. 1. Cubic five-point tree diagram in Yang-Mills theory.
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B−1
5 ¼ S0A4; B0

5 ¼ S1A4: ð16Þ

This leads to a system of equations for the coefficients ai,
which turns out to have a unique solution: A5, the n ¼ 5
Yang-Mills amplitude.
We can do the same, starting with a higher mass

dimension Ansatz, κ ¼ 2. Compared to a term like
Eq. (14), the numerators will in this case have two extra
powers of momenta. Imposing for each particle:

B5ðp5Þ →
�
1

z
S0 þ z0S1

�
AF3

4 ; ð17Þ

where AF3

4 is the known four-point amplitude with an F3

operator insertion. Again we find a unique solution:
B5ðp5Þ ¼ AF3

5 , the corresponding five-point amplitude with
an F3 insertion.
We can go to an even higher mass dimension at κ ¼ 4,

using the known lower point amplitudes Aκ¼4 ≡ a1AðF3Þ2þ
a2AF4

1 þ a3AF4
2 þ a4AF4

3 þ a5AF4
4 , and imposing the

following:

B5ðp7Þ →
�
1

z
S0 þ z0S1

�
Aκ¼4
4 : ð18Þ

There are five solutions, as expected: B5ðp7Þ ¼ Aκ¼4
5 .

Increasing the mass dimension to κ ¼ 6, terms like

ðe:ee:ee:p5Þðp1:p2p3:p4Þ2
p1:p2p3:p4

: ð19Þ

have manifest OðzÞ scaling and escape all soft theorems,
so, in this case, only the IR part of the amplitude is fixed.
Next we prove rigorously in which cases soft theorems

fully determine the YM amplitudes.
Proof.—The proof follows immediately from counting

arguments and the uniqueness results in Refs. [80,81]. To
figure out in which of the cases [Eqs. (8)–(10)] we land, we
have to compute the numerator mass dimension required to
form Aenh or the trivially scaling objects, both of which
must scale as OðzÞ in all n soft limits.
Ignoring the denominators, forming a term which

trivially satisfies this scaling requires numerators of mass
dimension n. For n > 4, the locality of the cubic propagator
structure enforces the existence of at least two 2-particle
poles per term, which are singular in four different soft
limits. Therefore n > 4 numerators must have mass dimen-
sion at least ½nþ 4� to also cancel the soft scaling of the
singular poles. At n ¼ 4 numerators of mass dimension 4
are sufficient to obtain trivial OðzÞ objects.
Because the Ansatz has an ordered propagator structure,

the only compatible and relevantAenh areNLSMamplitudes.
The polarizationvectors in theYMAnsatz canbe factoredout
and ignored. To form quartic NLSM amplitudes [with
ðn=2 − 2Þ propagators per term], from a cubic YM Ansatz
[with (n − 3) propagators per term] all the extra propagators

must be canceled. This requires numerators of mass
dimension ½n − 2þ 2ðn − 3Þ − 2ðn=2 − 2Þ� ¼ ½2n − 4�.
Now the uniqueness argument proves that all Ansätze

Bnðpn−2þκÞ are fixed as long as

n − 2þ κ < minðnþ 4; 2n − 4Þ; ð20Þ
for n ≥ 5.
Soft operators: We can replace the known lower point

amplitudes with another local Ansatz, and impose

B5ðp3Þ →
�
1

z
S0 þ z0S1

�
B4ðp2Þ ð21Þ

for each particle. It can be checked the solution is unique: we
find B5 ¼ A5 and B4 ¼ A4, the expected YM amplitudes.
This is still true for κ ¼ 2, where we find B5 ¼ AF3

5 , and
also B4 ¼ AF3

4 . However, with κ ¼ 4, besides the usual
amplitudes, we also find an extra nongauge invariant
solution.
As a result of these observations, we conjecture that for

general n soft operators fully fix the κ ¼ 0, 2 amplitudes,
while κ ¼ 4 amplitudes are fixed up to possible extra
nonphysical solutions.
Soft gauge invariance: We now relax the imposed IR

behavior even further, and demand that in the various soft
expansions:

B5ðp3Þ →
pi→0

1

z
B−1
5;i þ z0B0

5;iþ;…; ð22Þ

the functions B−1
5;i and B0

5;i are gauge invariant in particle i.
We find a unique solution B5 ¼ A5, and conjecture that this
remains true at higher multiplicity, for κ ¼ 0.
Gravity.—Compared to Yang-Mills theory, gravity

amplitudes satisfy one extra soft theorem [13],

An →

�
1

z
S0 þ z0S1 þ z1S2

�
An−1 þOðz2Þ; ð23Þ

have unordered cubic propagators, are multilinear in
polarization tensors eμνi ≡ eμi e

ν
i , and have numerators of

mass dimension ½2n − 4þ κ�. Again we use κ to label
different amplitudes, with κ ¼ 0 the usual GR amplitudes,
κ ¼ 2 the R2 operator insertion, and so on.
We can use identical reasons as for YM to prove that

GR amplitudes are fixed by soft theorems. The soft
theorem avoiding terms in this case must scale as Oðz2Þ
in all soft limits, so Aenh in this case can be either DBI
amplitudes or Galileon vertices. Forming DBI amplitudes
from a cubic Ansatz requires mass dimension ½3n − 6�
numerators, while the Galileon requires ½2n − 2�. Both are
always smaller than the trivially scaling object, which
requires ½2nþ 4�, due to the two singular two-particle poles
at n > 4. This implies that soft theorems fully fix GR
amplitudes if
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2n − 4þ κ < minð3n − 6; 2n − 2Þ; ð24Þ

for n ≥ 5.
Finally, we conjecture that soft operators fix the κ ¼ 0, 2

cases, and the κ ¼ 4 case up to possible nongauge invariant
terms. We also conjecture that soft gauge invariance fixes
the κ ¼ 0 case.
NLSM.—Besides the single soft theorems known as the

Adler zero [65,69,94], the NLSM also satisfies double soft
theorems [57,95]:

An → ðz0S0 þ zS1ÞAn−2 þOðz2Þ: ð25Þ

In this case soft theorem avoiding terms must scale as
Oðz2Þ in double soft limits. The starting Ansatz for the
NLSM,Bnðpn−2þκÞ, has poles corresponding to propagators
of ordered, quartic diagrams, like in Fig. 2. Three-particle
poles are singular in double soft limits, and there are a
minimumof two three-particle poles per term forn ≥ 8. Then
the trivially scaling object then requires ½nþ 4� mass
dimension numerators. There is no relevant Aenh for
NLSM amplitudes.
Therefore NLSM amplitudes are fixed for

n − 2þ κ < nþ 4; ð26Þ
for n ≥ 8.
To our knowledge a κ ¼ 2 correction has not yet been

computed, but the soft operator approach allows us to check
if such an amplitude exists.
Soft operators: By imposing

B6 → ðz0S0 þ zS1ÞB4; ð27Þ

it can be checked that both Ansätze are fully fixed for
κ ¼ 0, 2, and 4. The missing four-point amplitude at
κ ¼ 2 is given by:

Aκ¼2
4 ¼ s12s14; ð28Þ

but strangely does not satisfy Bern-Carrasco-Johansson
relations [90,96–99].
As before, we conjecture that soft operators fix the

higher multiplicity amplitudes.
Soft Adler zero: We can also impose a “soft Adler zero”

to obtain the NLSM amplitude. At six points, taking a
formal double limit in say particles 5 and 6:

B6 →
1

z
B−1
6 þ z0B0

6 þ zB1
6þ;…; ð29Þ

we now impose that the three terms above have OðzÞ
behavior when taking particles 5 and 6 separately soft.
Repeating the procedure for the other particles, we find that
B6 must be the κ ¼ 0 NLSM amplitude. We also conjecture
that this remains true for higher multiplicity.
Single soft theorems and extended NLSM: In Ref. [100]

it was discovered that various amplitudes contain hidden
so-called extended theories in their single soft limits. For
the NLSM, schematically this limit is

An ¼ z
X
i

sinA
NLSM⊕ϕ3

n−1 ðiÞ þOðz2Þ; ð30Þ

where ANLSM⊕ϕ
n is an amplitude of pions interacting with

biadjoint scalars. Its Feynman rules were found in
Ref. [53], but we can derive even these mixed amplitudes
simply by imposing on an appropriate Ansatz that each
NLSM pion obeys the NLSM soft theorems or operators.
Direc-Born-Infeld.—DBI satisfies double soft theorems

up to order Oðz3Þ [57], so we are looking for the lowest
mass dimension objects with Oðz4Þ scaling in all double
soft limits, which is again the Galileon vertex.
The DBI Ansatz has a form Bnðp2n−4þκÞ with quartic

propagators, so taking into account the four momenta
needed to cancel the two 3-particle poles for n ≥ 8, we
can obtain the DBI amplitudes for

2n − 4þ κ < 2n − 2þ 4: ð31Þ
We conjecture the same cases can be obtained from soft
operators (with the usual caveats), and that the soft Adler
zero implies the κ ¼ 0 case.
But simple counting shows that an interesting stronger

statement also holds: κ ¼ 0 DBI is completely fixed by just
the leading and subleading theorems, and therefore the
subsubleading theorem is not independent.
Dilaton.—The conformal dilaton [40,88,89] obeys lead-

ing and subleading soft theorems up to order OðzÞ. These
encode the scaling and conformal symmetries, respectively,
and are explicitly given in Refs. [42,87].
Depending on how conformal invariance is broken, two

theories emerge. For spontaneous breaking, the dilaton is a
Goldstone boson in the spectrum of the theory, so the
amplitudes have propagators. For explicit breaking, the
dilaton can be thought of as an external source, so there are
no poles.
Explicit breaking: In this case we consider a polynomial

Ansatz Bnðp4þκÞ, with Aenh given by the Galileon vertex,
with ½2n − 2�. The trivially Oðz2Þ-scaling object is ½2n�,
so for

4þ κ < 2n − 2; ð32Þ
all amplitudes are fixed by soft theorems.

FIG. 2. Quartic six-point tree diagram in NLSM.
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This implies that we can obtain higher and higher
corrections as we increase the multiplicity. On the other
hand, the counting also implies that the subleading theorem
is not independent, so scale invariance implies conformal
invariance. Since we do not assume unitarity, this general-
izes the result of Ref. [42].
The soft operator approach can also be checked to

reproduce the dilaton amplitudes computed in
Refs. [88,89]. For arbitary n and κ we conjecture that soft
operators also fix amplitudes when Eq. (32) is satisfied.
Spontaneous breaking: For this case we also allow

quartic poles in an Ansatz Bnðp4þκÞ, and impose the soft
theorems. For κ ¼ 0 the solutions we find are identical to
the explicit breaking case. For κ ¼ 2 at n ¼ 6, we obtain
the following general solution:

B6ðp6Þ ¼ a1A
explicit
6 ðp6Þ þ a2ADBI

6 ; ð33Þ

which is as expected, since the DBI action appears
manifestly in the dilaton effective action [87]. We expect
that similar behavior also holds at higher multiplicity.
Conclusions.—We have shown that imposing soft the-

orems completely fixes a wide range of scattering ampli-
tudes. Further, we have conjectured that in some cases the
same should hold when imposing the less constraining soft
operators or soft gauge invariance or Adler zero.
For both conceptual and practical purposes, it would be

extremely useful to transform these uniqueness results into a
general inverse soft limit type construction [101–104]. This
in turn could make manifest yet a new facet of scattering
amplitudes, that of asymptotic symmetries, perhaps leading
to a purely holographic description of the S matrix.
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