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Invasiveness of quantum measurements is a genuinely quantum mechanical feature that is not
necessarily detrimental: Here we show how quantum measurements can be used to fuel a cooling engine.
We illustrate quantum measurement cooling (QMC) by means of a prototypical two-stroke two-qubit
engine which interacts with a measurement apparatus and two heat reservoirs at different temperatures.
We show that feedback control is not necessary for operation while entanglement must be present in the
measurement projectors. We quantify the probability that QMC occurs when the measurement basis is
chosen randomly, and find that it can be very large as compared to the probability of extracting energy (heat
engine operation), while remaining always smaller than the most useless operation, namely, dumping heat
in both baths. These results show that QMC can be very robust to experimental noise. A possible low-
temperature solid-state implementation that integrates circuit QED technology with circuit quantum
thermodynamics technology is presented.

DOI: 10.1103/PhysRevLett.122.070603

Introduction.—The second law of thermodynamics
dictates that heat naturally flows from hot bodies to cold
ones [1]. There are two standard ways to intervene and
reverse the natural flow of heat (see Fig. 1): (a) use work
supplied by an external time-dependent driving force fðtÞ
thus realizing a standard refrigeration machine, see, e.g.,
Refs. [2,3]; (b) implement a Maxwell demon that steers the
heat by means of a feedback control loop, consisting in
acquisition of information about the state jni of the working
substance by means of noninvasive measurement, followed
by the timely application of various driving forces fnðtÞ,
depending on the measurement outcome, that do not do
work on the system [4–6]. By noninvasive measurement
here we mean that the measurement basis coincides with
the basis in which the state of the measured system is
diagonal (in the present work that is the energy eigenbasis).
Here we will demonstrate yet another mechanism that is
genuinely quantum mechanical, namely, (c) to use invasive
quantum measurements as a resource, in fact a fuel, that
powers refrigeration, without any feedback control. We
shall call this mechanism “quantum measurement cooling”
QMC. QMC is performed by a demon who needs not be
intelligent. It rather needs to be knowledgeable, that is it has
to know which measurement basis fjψkig to employ in
order that QMC occurs.
While the idea of using measurement apparata to fuel

engines is currently emerging as a new paradigm in
quantum thermodynamics [7–10], attention has never been
posed before on whether it can be used for cooling, nor on

the fact that, as we elucidate below, feedback control is
not necessary for exploiting the quantum-measurement
fuel. We address these questions by means of a thorough
investigation of a prototypical two-qubit engine [2,3,5].
Our results shed new light on many facets of the second law
of thermodynamics. For example, it emerges that in order
for the device to work the measurement basis must contain

(a) (b) (c)

FIG. 1. Various ways to pump a heat current from a cold to a hot
reservoir. (a) In standard refrigeration the heat current is powered
by energy injected by a time dependent driving force fðtÞ. (b) In
Maxwell demon refrigeration heat current is generated by a
feedback loop where various driving forces fnðtÞ are applied
depending on the outcome n of noninvasive measurements on the
working substance, without energy injection. (c) In quantum
measurement cooling, put forward here, the heat current is
powered by energy provided via invasive measurements on an
appropriate measurement basis fjψkig, without performing feed-
back control. Solid arrows represent flow of energy.
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entangled projectors, while maximal efficiency is achieved
when the postmeasurement statistical mixture ρ0 [see
Eq. (4)] is unentangled. We also find that, when the
measurement basis is chosen randomly, the least useful
operation—i.e., dumping heat in both baths—is the most
likely outcome (hence easier to realize in practice), which
conforms to intuition. Also, while energy extraction is
typically very unlikely, refrigeration can be very likely.
This says that our demon needs not be very knowledgeable
in order to realize QMC, or in more concrete terms, QMC
can be very robust to experimental noise, that is, it is
practically feasible. In the following we shall comment on a
possible experimental realization.
The model.—Our model is a two-qubit engine [2,3,5,

11–13]; see Fig. (2). Let

Hi ¼
ℏωi

2
σiz ð1Þ

denote the Hamiltonian of qubit i expressed in terms of its
Pauli matrix σiz and its resonance frequency ωi. Let

H ¼ H1 þH2 ¼
X
n

EnΠn ð2Þ

be the total Hamiltonian, En its eigenvalues with corre-
sponding eigenprojectors Πn ¼ jnihnj and eigenvectors jni.
The two qubits are prepared each by thermal contact with

a thermal bath at positive inverse temperatures β1 and β2,
respectively, so that the initial state reads

ρ ¼ e−β1H1

Z1

⊗
e−β2H2

Z2

; ð3Þ

where Zi ¼ Tre−βiHi is the canonical partition function.
Without loss of generality we shall set 0 < β1 < β2 in what
follows (bath 1 hotter than bath 2).
The quantum measurement cooling cycle is illustrated

in Fig. 2. In the first stroke the two-qubit system interacts
with a measurement apparatus, whose effect is to erase
all coherences of the two qubit compound state in the
measurement basis fjψkig. In the following we shall focus
for simplicity on the case of projective measurements onto
one-dimensional subspaces, pointing out on a case-by-case
basis those results that have broader validity. Denoting the
projectors onto the measurement basis as πk ¼ jψkihψkj the
postmeasurement state ρ0 reads

ρ0 ¼ Φ½ρ� ¼
X
k

πkρπk: ð4Þ

Let hΔEii ¼ TrHiðΦ½ρ� − ρÞ denote the change in the
expectation value of energy of qubit i. Because of the
property of Φ of being a unital map (namely, Φ½1� ¼ 1), it
follows that [5]

β1hΔE1i þ β2hΔE2i ≥ 0; ð5Þ

which expresses the second law of thermodynamics.
In the second stroke each qubit is put back in contact

with its thermal bath, which restores it to its initial Gibbs
state and closes the cycle. Note that in the thermalization
stroke, on average, each qubit releases the energy hΔEii,
gained during the first stroke, to its respective bath. The
hΔEii’s represent therefore the heat exchanged with the
two baths.
The sum hΔEi ¼ hΔE1i þ hΔE2i (sometimes referred

to as “quantum heat” [14]) representing the energy given
by the measurement apparatus is generally different from
zero. Looking at the signs of the three energy exchanges
hΔEi, hΔE1i, hΔE2i, out of the 8 possible combinations
only 4 are allowed by Eq. (5), the condition hΔEi ¼
hΔE1i þ hΔE2i, and the condition 0 < β1 < β2:

½R�∶ hΔE1i ≥ 0; hΔE2i ≤ 0; hΔEi ≥ 0;

½E�∶ hΔE1i ≤ 0; hΔE2i ≥ 0; hΔEi ≤ 0;

½A�∶ hΔE1i ≤ 0; hΔE2i ≥ 0; hΔEi ≥ 0;

½H�∶ hΔE1i ≥ 0; hΔE2i ≥ 0; hΔEi ≥ 0: ð6Þ

They correspond to (see Fig. 2) [R] refrigerator: heat
flows from the cold bath to hot bath, with energy injection
from the measurement apparatus; [E] energy extraction
(heat engine): part of the energy naturally flowing from the
hot bath to the cold bath is derouted towards the meas-
urement apparatus; [A] thermal accelerator: the measure-
ment apparatus provides energy to facilitate the natural
flow from the hot bath to the cold bath; [H] heater: both
baths receive energy from the measurement apparatus.
Which of the 4 possibilities is realized depends on the

First 
Stroke

Second 
Stroke

[A]

[E][R]

[H]

FIG. 2. Left panel: Two-stroke two-qubit quantum measurement
cooling. During the first stroke (top) the two qubits interact with
the measurement apparatus, as a consequence qubit 1 receives
energy (hΔE1i ≥ 0), while qubit 2 loses energy (hΔE2i ≤ 0) with
an overall positive energy injection (hΔE1i þ hΔE2i ¼
hΔEi ≥ 0). During the second stroke qubit 1 releases energy to
the hot bath while qubit 2 withdraws energy from the cold bath.
Right panel: the four possible operations allowed by the second
law of thermodynamics, Eq. (5), and energy conservation.
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measurement basis fjψkig. The above argument holds as
well for higher rank projectors.
Results.—Our first main result is that depending on the

problem parameters, some among the four possibilities,
[R], [E], [A], [H], are excluded. In particular, for 0 ≤
ω2=ω1 ≤ β1=β2 only [R] and [H] are allowed. For β1=β2 ≤
ω2=ω1 ≤ 1 only [E], [A], and [H] are allowed. For
ω2=ω1 ≥ 1 only [A] and [H] are allowed. Note that the
most useless operation, [H], may occur in the full parameter
range. For simplicity we shall call the range 0≤ω2=ω1≤
β1=β2 the [R] range, the range β1=β2≤ω2=ω1≤1 the [E]
range, and the range ω2=ω1 ≥ 1 the [A] range. In the
Supplemental Material [15] we provide a proof and discuss
how this result is related to the concept of ergotropy [21].
Our second main result is that, in the [E] range, among

all possible choices of measurement basis fjψkig, the
singlet-triplet basis

jψ�
1i ¼ j↑↑i; jψ�

2i ¼
j↑↓i þ j↓↑iffiffiffi

2
p

jψ�
3i ¼

j↑↓i − j↓↑iffiffiffi
2

p ; jψ�
4i ¼ j↓↓i ð7Þ

maximizes the energy extraction. This choice maximizes
as well the heat engine efficiency η½E� ¼ hΔEi=hΔE1i.
Similarly, in the [R] range, the same choice of basis max-
imizes the energy withdrawn from the cold bath −hΔE2i
and the refrigeration efficiency η½R� ¼ −hΔE2i=hΔEi. These
results also show that the set of measurement bases realizing
the [E] and [R] operations are not empty, that is energy
extraction and quantum measurement cooling are possible.
The proof is presented in Ref. [15].
As shown in Ref. [15] when a two-qudit working

substance is considered the generic form of the optimal
basis is such that it contains only factorized states of the
type ja; ai and pairs of entangled states of the type
ðja; bi � jc; diÞ= ffiffiffi

2
p

.
When the measurement basis is fjψ�

kig, the expression
for the hΔEii’s is

hΔE1;2i ¼
�ω1;2

2

�
1

1þ eβ1ω1
−

1

1þ eβ2ω2

�
; ð8Þ

that is half the value obtained when implementing standard
refrigeration on the two-qubit engine by means of a full
SWAP driving gate [2], which maximizes standard refrig-
eration (or energy extraction, depending on the range) over
all possible unitary gates [13,15]. We note that the same
energy exchanges in Eq. (8), hence maximal efficiency, can
be obtained as well with higher rank projectors, e.g., with
q1 ¼ jψ�

1ihψ�
1j þ jψ�

2ihψ�
2j, q2 ¼ jψ�

3ihψ�
3j þ jψ�

4ihψ�
4j, or

with q1¼jψ�
2ihψ�

2j, q2 ¼ jψ�
1ihψ�

1j þ jψ�
3ihψ�

3j þ jψ�
4ihψ�

4j.
In the general case of a working substance composed of

two qudits, in order for any operation other than [H] to

occur some of the measurement projectors must be
entangled, regardless of their rank [22]. However, this
does not necessarily mean that the postmeasurement state
ρ0, which is a mixture of them, is an entangled one. Quite
remarkably, it can rather be proved on general grounds [15]
that thermodynamic efficiency is extremal at points where
the postmeasurement state ρ0 is diagonal in the fjnig basis,
that is it has no entanglement. One can check that the ρ0
resulting from the choice fjψ�

kig above is in fact diagonal in
the fjnig basis.
Third, we have found the following. Imagine to pick

the measurement basis fjψkig randomly. Then, on average,
the changes in the energy expectation value hΔEii is non-
negative, for both i ¼ 1, 2,

hΔEii ≥ 0; ð9Þ

where the overline denotes the average over the invariant
measure of SUð4Þ [or more generally SUðNÞ when con-
sidering a larger working substance]: picking a random
basis fjψkig is equivalent to picking a random unitary U:
jψki ¼ Ujki. That is, if choosing a random measurement
basis, on average, the less useful operation, i.e., [H], is
realized, independently of the choice of parameters. This
means that, without any knowledge on what to do, one can
only heat up everything [23]. This is in fact a general result
that sheds light on an interesting facet of the second law.
The general proof is presented in Ref. [15].
It follows that in order to realize QMC, one needs to

know which measurement basis to use. This then opens the
question of what is the probability Px that operation x (with
x ¼ ½R�; ½E�; ½A�; ½H�) is realized when picking a basis-
change unitary U randomly from the invariant SUð4Þ
measure. Said probability Px is given by the ratio
Mx=M of the volume Mx of the subset of SUð4Þ that
corresponds to the [x] operation rescaled by the total
volume M of the group. Volumes are calculated with
respect to the invariant (Haar) measure of the group. To
quantify it we have employed the parametrization of SUð4Þ
in terms of generalized Euler angles α ¼ ðα1; α2;…; α15Þ
[24] and have performed a uniform Monte Carlo sampling
of the Euler angles. We remark that such sampling is not
uniform with respect to the group invariant measure
dΩðαÞ ¼ MðαÞdα: To achieve uniformity over said mea-
sure each point α in the sample has to be weighted with the
according factorMðαÞ. The results are reported in Fig. (3).
We first note that the Monte Carlo sampling confirms the

results reported above, regarding the range of parameters
associated to each operation. We also note that [H] is
always the most likely operation, regardless of the param-
eter range. The most surprising observation is that, while
the probability P½E� of [E] operation, is extremely low, the
probability of [R] operation can be very large. In fact it
tends to 1=2 from below as ω2=ω1 → 0. This highlights an
asymmetry between the [R] and [E] operations [25] having
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an important consequence: it shows that QMC can be made
more and more robust to noise by decreasing the ratio
ω2=ω1. This is confirmed by our numerical study showing
that the region of SUð4Þ for which QMC is realized not
only grows with decreasing ω2=ω1 but also remains
connected [15]. Thus, experimental noise on the measure-
ment basis is not an issue with respect to implementations.
In contrast, the practical feasibility of the [E] operation is
greatly hindered by the fact that P½E� is extremely small;
hence it is extremely sensitive to experimental noise.
Considerations about the experimental realization.—

Quantum measurement cooling can be practically realized
with solid-state superconducting circuitry by a suitable
integration of circuit QED tools [26] and circuit quantum
thermodynamics (circuit QTD) tools [27]. A possible
design comprises two superconducting qubits coupled to
an on-chip microwave line resonator [28]. Using the
expression πk ¼ UΠkU† in Eq. (4) to obtain Φ½ρ� ¼P

UΠkU†ρUΠkU†, we see that the first stroke (measure-
ment) dynamics can be implemented by the combination of
two-state manipulation and standard measurement on the
fjnig basis, as customarily done for two-qubit tomography
[28]. That is, first the gate U† is applied, e.g., by driving
two-photon side-band transitions [29]. Then, quantum-non-
demolition measurement is applied in the fjnig basis by
driving the cavity at the appropriate frequency [28]. Finally,
the gateU is applied, e.g., by driving two-photon side-band
transitions [29]. The qubit level spacings can be manipu-
lated by means of local magnetic fields, and cross-
resonance techniques can be used to entangle them when
far detuned [30,31]. The output of the measurement can be
inferred by reading the quadratures of the field transmitted
through the resonant cavity [28]. The second stroke can be
realized by inductively coupling each qubit to an on-chip
resistor kept at inverse temperature βi [5,32,33]. Heat
exchanged with the resistors could be calorimetrically

measured by means of fast on-chip thermometry of the
resistors’ electron gas temperature [34,35].
Conclusions.—We have presented a genuinely quantum

mechanical cooling concept, whereby the fuel is the energy
exchanged with a measurement apparatus performing
invasive quantum measurements. No feedback control is
necessary. We found a number of results valid in the case of
a generic two-qudit working substance: (a) in order for the
engine to do anything useful the measurement basis must
contain entangled projectors, while, quite paradoxically,
best performance is achieved when the postmeasurement
mixture ρ0 is nonentangled; (b) lack of knowledge of how to
operate the engine leads on average to heating up every-
thing. Quite surprisingly in the special case of two qubits,
we have found that when choosing the measurement basis
randomly, QMC can be rather likely to occur (in contrast to
energy extraction), which makes its implementation robust
to experimental noise. While being aware that the issue
of the energetic cost of ideal projective measurement is still
an actively debated fundamental problem in measurement
theory [36–39], two-qubit QMC can be practically realized
with superconducting circuitry by combination of circuit
QED and circuit QTD (quantum thermodynamics) ele-
ments and methods.
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