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The eigenstate thermalization hypothesis (ETH) is one of the cornerstones of contemporary quantum
statistical mechanics. The extent to which ETH holds for nonlocal operators is an open question that we
partially address in this Letter. We report on the construction of highly nonlocal operators, behemoths, that
are building blocks for various kinds of local and nonlocal operators. The behemoths have a singular
distribution and width w ∼D−1 (D being the Hilbert space dimension). From there, one may construct local
operators with the ordinary Gaussian distribution and w ∼D−1=2 in agreement with ETH. Extrapolation to
even larger widths predicts sub-ETH behavior of typical nonlocal operators with w ∼D−δ, 0 < δ < 1=2.
This operator construction is based on a deep analogy with random matrix theory and shows striking
agreement with numerical simulations of nonintegrable many-body systems.
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Introduction.—Some of the most fundamental questions
in quantum statistical mechanics relate to whether and how
thermalization occurs in isolated quantum systems out of
equilibrium. Whereas a closed quantum system in a pure
state never comes to thermal equilibrium, subsystems may
thermalize in the sense that observables acting on the
subsystem may be computed from a thermal ensemble in
the long time limit. The process of thermalization depends
on the nature of the many-body system, the initial state, the
subsystem, and the observable. Despite the complexity of
this problem, the eigenstate thermalization hypothesis
(ETH) boils the issue down to the nature of the matrix
element distribution of the observable in the eigenstate
basis. ETH is the conjecture that the fluctuations of these
matrix elements are exponentially small in the system size
[1–15]. Denoting eigenvalues and eigenstates by EA and
jEAi, ETH for an operator Ô is stated as

hEAjÔjEBi ¼ δABf
ð1Þ
O ðĒÞ þ e−SðĒÞ=2fð2ÞO ðĒ;ωÞRAB; ð1Þ

where S ∼ logD is the entropy and D is the Hilbert space
dimension, Ē ¼ ð1=2ÞðEA þ EBÞ andω ¼ EB − EA, RAB is
a random variable with zero mean and unit variance, and
fð1;2Þ are smooth functions. A crucial aspect of ETH is the
scaling of the width of the operator distribution: the width
of the distribution falls off as e−SðĒÞ=2 ∼D−1=2. This scaling
is based on the similarity between typical many-body
eigenstates and random states [16–18].
Evidence from a large number of numerical studies

strongly suggests that ETH is satisfied for typical states
of generic nonintegrable systems and for physical observ-
ables [13–38]. However, there is currently little sharp
understanding of the class of operators which satisfy

ETH. While local observables are expected to obey
ETH, one might imagine that sufficiently nonlocal oper-
ators are athermal because there is no distinction between
the subsystem and the bath. Projection operators onto
eigenstates are extreme examples of this type. Earlier work
related to nonlocal operators in the ETH context includes
Refs. [34,39–42].
In this Letter, we explore a correspondence between

Gaussian random matrices (GRM) governed by random
matrix theory (RMT) and many-particle quantum systems
that allows one to make testable predictions for the scaling
of matrix element distributions of fairly general operators.
Figure 1 summarizes our classification of operators. We
begin by considering a class of highly nonlocal operators
that connect single pairs of many-body configurations. We
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FIG. 1. Schematic showing the space of operators Ō having
elements zero or unity in the configuration basis. The operators
within Ō are organized into classes distinguished by the scaling
of the width σ ∼D−δ of matrix element distributions in the
eigenstate basis. The number of each class of operators is shown
using the big-O notation.
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will call these behemoth operators. Using RMT, we
analytically derive the distribution of eigenstate matrix
elements of behemoths. We demonstrate that behemoths in
a wide class of lattice many-body systems match the RMT
predictions. We show that these operators are distinguished
by exhibiting super-ETH scaling with eigenstate distribu-
tion width scaling as D−1.
The behemoth operators have a deeper importance: they

are building blocks for a vastly larger class of operators that
includes the local operators. By connecting more and
more pairs of many-body configurations, one can tune
the scaling of the matrix element distribution to be D−δ.
The super-ETH operators have 1=2 < δ ≤ 1, the operators
that obey ETH (such as local operators) have δ ¼ 1=2 and
the sub-ETH operators have δ < 1=2. As with behemoth
operators, RMT supplies predictions for the distribution
of all such operators that we compare with numerical
results for many-body Hamiltonians. This construction is
an alternative route to the D−1=2 (ETH) scaling of local
operators.
Figure 1 summarizes our results using a schematic of the

space of operators (restricted to those with elements zero
and one in the operator matrix), Ō. The sizes of different
subsets of operators within Ō are indicated, together with
the scalings that we have derived using random matrix
calculations and tested numerically on many-body systems.
Analogy between random matrix theory and many-body

physics.—Suppose Hij is a N × N GRM with eigenstates
jEαi. This can be interpreted as a single particle hopping
Hamiltonian on a fully connected network, with “node”
indices i, j. We also consider a D ×D many-body lattice
Hamiltonian Hnn0 with eigenstates jEAi. Each n is a many-
body configuration, specified by the occupancies of the L
lattice sites. RMT predictions apply directly for the single-
particle system, since Hij is a GRM. To apply these
predictions to the many-particle system, we need to replace
nodes i, j by configurations n, n0 and N by D. Unlike Hij,
the many-body Hamiltonian matrix Hnn0 is sparse and its
elements are not truly random. Nevertheless, nonintegrable
many-body Hamiltonians generally follow many RMT
predictions, e.g., (a) the energy eigenvalues fEAg display
Wigner-Dyson level statistics, like their GRM counterparts
fEαg, and (b) the eigenstate coefficients UA;n ≡ hnjEAi
form dense matrices with approximately Gaussian-
distributed elements [43], like their GRM counterparts
uα;i ≡ hijEαi.
For the single-particle system, the natural operators to

consider are ω̂ij ≡ d̂†i d̂j, node-to-node hopping operators.
The corresponding operators in the many-body model each
connect one pair of many-body configurations:

Ω̂nn0 ≡ jnihn0j: ð2Þ

As these are extremely nonlocal, we call them behemoth

operators. The matrix representation of Ω̂nn0 in the

configuration basis has only one nonzero entry:
hmjΩ̂nn0 jm0i ¼ δmnδm0n0 . Behemoths thus form a basis for
all operators. Hermitian counterparts of behemoths,
Γ̂nn0 ≡ Ω̂nn0 þ Ω̂n0n, have two nonzero entries.
We will examine the distribution of eigenstate matrix

elements of behemoths. We propose that the statistics of
such many-body matrix elements match those of the matrix
elements of ω̂ij ¼ d̂†i d̂j in GRM. Below, we calculate their
distribution on the GRM side and then carry out numerical
tests of the correspondence.
If the many-body Hamiltonian conserves particle num-

ber Np, then for spinless fermions or hard-core bosons the
many-body matrix elements of the behemoths are

ΩAB
nn0 ≡ hEAjΩ̂nn0 jEBi ¼ hEAj

YNp

k¼1

ĉ†rk ĉsk jEBi: ð3Þ

The Behemoth changes one configuration of Np particles
into another. Here frkg (fskg) is the set of distinct sites
occupied in configuration n (n0). (Some sites might
be occupied in both n and n0 configurations [44].) For
spin-1=2 systems, spins up (down) are interpreted as
occupied (empty) sites and Np is the number of up spins.
Equation (3) can be readily generalized to cases where
multiple occupancies are allowed (e.g., bosonic or fer-
mionic Hubbard models, or S > 1

2
spin systems), and to

systems where particle number is not conserved [44].
From nonlocal to local.—Besides Ω̂nn0 , we consider

operators with varying degrees of locality, Ω̂M ¼Q
n
k¼1 ĉ

†
rk ĉsk , which hop n of the Np particles (n≲ Np).

The expectation values of Ω̂M are ð2nÞ-point correlators.
(For simplicity we consider the sets frkg and fskg to have
no intersection.) Whereas Ω̂nn0 couples exactly two con-
figurations, Ω̂M changes the configuration on 2n sites while
the remaining sites may adopt any of

M ≡
�
L − 2n

Np − n

�

configurations. The matrix representing Ω̂M thus has M
nonzero elements, each equal to 1; i.e., Ω̂M ¼ P

M
j¼1 Ω̂nj;n0

j

is a sum of M behemoths [46]. The behemoths themselves
correspond to n ¼ Np, with M ¼ 1. The limit of a local
single particle hopping operator is n ¼ 1. Local operators
are thus formed by combining M ¼ OðDÞ behemoths.
Statistics of many-body operators from RMT.—We now

make concrete predictions using RMT. The GRM objects
corresponding to the matrix elements of Eq. (3) are
ωαβ
ij ¼ hEαjd̂†i d̂jjEβi ¼ u⋆α;iuβ;j.
We first focus on Gaussian orthogonal ensemble (GOE)

matrices. For sufficiently large matrix sizes N, coefficients
of eigenstates un;i are real-valued independent Gaussian
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variables with zero mean and variance σ21 ¼ 1=N [47–50].
The distribution is PuðuÞ ¼ e−u

2=2σ2
1=

ffiffiffiffiffiffiffiffiffiffi
2πσ21

p
. Within this

approximation, both the diagonal (α ¼ β) and off-diagonal
(α ≠ β) matrix elements of ω̂ij have the distribution

PωðxÞ ¼
Z

∞

−∞
du1du2Puðu1ÞPuðu2Þδðx − u1u2Þ

¼ 1

πσ21
K0

�jxj
σ21

�
: ð4Þ

Here KνðxÞ is the modified Bessel function of the second
kind. For the Hermitian counterpart γαβij ¼ ωαβ

ij þ ωαβ
ji we

distinguish between diagonal matrix elements (α ¼ β) for
which we obtain Pγ;diagðyÞ ¼ Pωðy=2Þ=2 and off-diagonal
matrix elements (α ≠ β) for which we must convolve two
distributions of the form (4) giving [45]

PγðyÞ ¼
1

2π

Z
∞

−∞
e−iqy

dq
1þ σ41q

2
¼ e−jyj=σ21

2σ21
: ð5Þ

Next we look at sums of M operators of type ω̂ij and
calculate the distribution of diagonal and off-diagonal
matrix elements. The Fourier transform P̃ωM

ðqÞ of PωM
ðXÞ

is the Mth power of P̃ωðqÞ ¼ ð1þ σ41q
2Þ−1=2 [45]. This

leads to

PωM
ðXÞ ¼ 1ffiffiffi

π
p

Γ½M=2�σ21

� jXj
2σ21

�½ðM−1Þ=2�
K½ð1−MÞ=2�

�jXj
σ21

�
:

ð6Þ

This function is Gaussian for large enough M:
PωM

ðXÞ ≈ e−X
2=ð2Mσ4

1
Þ=

ffiffiffiffiffiffiffiffiffiffi
2πM

p
σ21, in accordance with the

central limit theorem. The variance of this distribution is
Mσ21 ∼MN−2 which goes as 1=N for M ∼ N.
The distribution of the Hermitian analog, γ̂M0 for off-

diagonal matrix elements is Eq. (6) with M ¼ 2M0. The
distribution for diagonal elements of γ̂M0 is PωM

ðY=2Þ
with M ¼ M0.
The analysis for the GUE case is similar [45]. The off-

diagonal matrix elements are now complex; the marginal
distributions for real and imaginary parts of ωαβ

ij have
exponential form. The amplitude has the distribution

PjωjðxÞ ¼
x
σ42

K0

�
x
σ22

�
; ð7Þ

which vanishes for x → 0. Here σ22 ¼ 1=ð2NÞ. Other
GUE and GSE distributions are derived for completeness
in Ref. [45].
We now discuss these results in light of the correspon-

dence with many-body physics. For eigenstates in the
middle of the spectrum of a local nonintegrable model—
those for which the energy dependence of the states is

weakest—we expect that the off-diagonal matrix elements
of Behemoth operators of the type (3) should be distributed
according to Eq. (4), or according to Eq. (7) if time reversal
symmetry is violated. Similarly, Hermitian counterparts to
behemoths, and diagonal matrix elements should follow
the corresponding RMT distributions outlined above. The
width σ21 ¼ 1=N in GRM becomes 1=D in the many-body
case. The behemoths thus obey a super-ETH scaling
behavior. Then, by tuning M in Eq. (6) we interpolate
between Behemoth operators for M ¼ 1 to local one-
particle hopping operators for

M ¼
�

L − 2

Np − 1

�

where there is particle number conservation and M ¼ 2L−2

otherwise. The width of local operator distributions scales
as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MD−2

p
∼D−1=2, as enshrined in the usual statement of

ETH. Here, we have made predictions for the whole
distributions of classes of local and nonlocal operators
with no fitting parameters.
Numerical results.—We now present numerical tests of

the conjectures described above. We performed these tests
on an array of different interacting many-body lattice
systems, including spin-1=2 chains, bosonic Hubbard
models, and interacting spinless fermions. Data for three
different systems appear in Figs. 2 and 4 while further
comparisons (with specifications of the models) appear in
Ref. [45]. Figure 2 shows the computed distributions
(histograms) of off-diagonal matrix elements of
Behemoth operators for a GOE case (spin chain) and a
GUE case (Bose-Hubbard ladder with a magnetic field
piercing every plaquette). Figures 2(a) and 2(b) use a single
Behemoth and 20% of the midspectrum eigenstates of the
system. Because particular operators may have atypical
behavior, in Fig. 2(c) and the rest of the Letter we use
statistics from a random set of between 50 and 500
behemoths, the matrix elements are typically calculated
between the central 50–200 eigenstates. Owing to the
greater abundance of data for off-diagonal matrix elements
we present these here and show results for diagonal matrix
elements—which have the same scaling—in Ref. [45].
The agreement in Fig. 2 with RMT predictions,

Eqs. (4), (5), and (7), is excellent. The same is true for
all systems we have tested, for both off-diagonal and
diagonal matrix elements [45], as long as the systems
are in nonintegrable (ergodic) regimes.
We next consider operators interpolating between behe-

moths and local operators, i.e., (2n)-point correlators,
with n ¼ Np for behemoths and n ¼ 1 for local operators.
These correspond to increasing M, the number of nonzero
elements in the operator matrix. Distributions of matrix
elements are shown in Figs. 3(a)–3(c) for the spin chain, for
n ¼ Np, n ¼ Np − 1, and n ¼ 1. The distribution goes
from exponential to Gaussian asM increases. The scaling is
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∼D−1 (super-ETH) for behemoths and ∼D−1=2 for n ¼ 1,
Fig. 3(d).
At moderate M the agreement with Eq. (5) is excellent.

A striking effect is seen at large M: the local operator
distribution has the Gaussian shape and D−1=2 scaling
predicted by RMT, Eq. (5), but the width is systematically
larger by a factor of order 1 [Figs. 3(c) and 3(d)]. This
discrepancy is due to the presence of weak correlations in
the eigenstates [45]. Correlation effects result in a remark-
able partial violation of the central limit theorem.
Whereas M < OðDÞ operators have super-ETH scaling,

we can also construct operators with sub-ETH scaling.
By filling M ∼D1þβ elements [β ∈ ð0; 1Þ] of the operator
matrix, we obtain “dense” operators with matrix element
distributions having widths ∼

ffiffiffiffiffi
M

p
D−1 ∼D−1=2þβ=2. Two

examples are shown in Fig. 3(e); the predictions are borne
out by the numerical results.
Exceptions to RMT scaling.—We have shown that the

correspondence between GRM and many-body operator
distributions works very well for the vast majority of
eigenstates and typical behemoths in nonintegrable models.
Under exceptional circumstances, it can be made to fail. For
example, if one or both of the configurations jni, jn0i in
Eq. (2) are such that they predominantly have weight in
the highest- or lowest-energy eigenstates, then the corre-
sponding behemoth Ωnn0 will have anomalously small
matrix elements for midspectrum eigenstates. Maximally
ferromagnetic configurations for a spin chain can lead to
such anomalies [45].

The RMT correspondence is expected not to work in
nonergodic (ETH-violating) systems, e.g., many-body-
localized (MBL) systems [14,51–54] and integrable sys-
tems. Figures 4(a) and 4(b) show the Hermitian behemoth
distribution for an interacting disordered system. At small
disorder (ergodic phase), the RMT-predicted exponential is
an excellent fit. In the MBL phase, Fig. 4(b), the distri-
bution is a clear power law. This result immediately follows
from the power law distribution of eigenstate coefficients
known for the MBL phase [53].
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In integrable systems, local operators have non-ETH
scaling (power law with system size) [17,18,55–58]. The
behemoths, however, have the same D−1 scaling as in
nonintegrable cases, by normalization. Figure 4(c) shows
some deviation from the RMT prediction in the integrable
XXZ chain. It is conjectured that the coefficient distribution
of integrable systems approaches a power law for D → ∞
[43], which implies that the behemoth distribution also
approaches power law behavior. The size-dependence of
our data is consistent with this conjecture.
Discussion.—In this Letter, we have investigated the

matrix element distribution of operators acting on typical
midspectrum eigenstates of many-body Hamiltonians.
The distributions in nonintegrable many-body interacting
models largely match random matrix theory predictions.
We have (i) constructed extremely nonlocal operators—
behemoths—that satisfy super-ETH scaling (width σ ∼
D−1 compared to σ ∼D−1=2 for ETH), (ii) interpolated
between behemoths and local operators noting that the
form of the distribution and its scaling can be captured by
RMT but that for local operators there are small departures
in the width coming from correlations in the many-body
eigenstates, and (iii) obtained a set of typical operators with
sub-ETH scaling (σ ∼D−δ with δ < 1=2).
In closing, we consider the frequency with which

different scalings occur in the space of all operators O
acting on the many-body Hilbert space (Fig. 1). Consider a
many-body system with a D dimensional Hilbert space and
operators Ω̂ that each contain M nonzero elements in the
configuration basis where 1 ≤ M ≤ D2. The behemoths
form a basis in O but to facilitate the counting, we consider
sums of behemoths with coefficients zero and one—the set
of operators living in Ō ⊂ O. We expect, however, the
scalings we have found to hold for arbitrary coefficients of
order 1 and for any basis “sufficiently different” from the
eigenstate basis. There are then 2D

2

distinct operators in Ō.
Of these, there are D2 Behemoth operators and ðlogDÞ2
physical two-point local operators. Assuming that the
random matrix scaling is obeyed by all typical operators
within each class, it follows that super-ETH scaling is
observed for

PD−1
k¼1 ðD

2

k Þ operators, ETH scaling for ðD2

D Þ and
sub-ETH scaling for the rest. For large D this gives
exp½DðlogDþ 1Þ�= ffiffiffiffi

D
p

super-ETH operators. The sub-
ETH operators appear exponentially more frequently than
the rest, while physical operators are doubly exponentially
suppressed again in the space of operators withD−δ scaling
with δ ≥ 1=2. From this point of view, typical operators
exhibit sub-ETH scaling while ETH scaling is exponen-
tially rare. Both the dominance of sub-ETH operators
and the relative rarity of behemoths are compounded
when arbitrary coefficients (not only 0 and 1) are
allowed [59].
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